30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Targeting Macrophages in Cancer: From Bench to Bedside

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Macrophages are a major component of the tumor microenvironment and orchestrate various aspects of immunity. Within tumors, macrophages can reversibly alter their endotype in response to environmental cues, including hypoxia and stimuli derived from other immune cells, as well as the extracellular matrix. Depending on their activation status, macrophages can exert dual influences on tumorigenesis by either antagonizing the cytotoxic activity immune cells or by enhancing antitumor responses. In most solid cancers, increased infiltration with tumor-associated macrophages (TAMs) has long been associated with poor patient prognosis, highlighting their value as potential diagnostic and prognostic biomarkers in cancer. A number of macrophage-centered approaches to anticancer therapy have been investigated, and include strategies to block their tumor-promoting activities or exploit their antitumor effector functions. Integrating therapeutic strategies to target TAMs to complement conventional therapies has yielded promising results in preclinical trials and warrants further investigation to determine its translational benefit in human cancer patients. In this review, we discuss the molecular mechanisms underlying the pro-tumorigenic programming of macrophages and provide a comprehensive update of macrophage-targeted therapies for the treatment of solid cancers.

          Related collections

          Most cited references186

          • Record: found
          • Abstract: found
          • Article: not found

          Immunity, inflammation, and cancer.

          Inflammatory responses play decisive roles at different stages of tumor development, including initiation, promotion, malignant conversion, invasion, and metastasis. Inflammation also affects immune surveillance and responses to therapy. Immune cells that infiltrate tumors engage in an extensive and dynamic crosstalk with cancer cells, and some of the molecular events that mediate this dialog have been revealed. This review outlines the principal mechanisms that govern the effects of inflammation and immunity on tumor development and discusses attractive new targets for cancer therapy and prevention. 2010 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Exploring the full spectrum of macrophage activation.

            Macrophages display remarkable plasticity and can change their physiology in response to environmental cues. These changes can give rise to different populations of cells with distinct functions. In this Review we suggest a new grouping of macrophage populations based on three different homeostatic activities - host defence, wound healing and immune regulation. We propose that similarly to primary colours, these three basic macrophage populations can blend into various other 'shades' of activation. We characterize each population and provide examples of macrophages from specific disease states that have the characteristics of one or more of these populations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Macrophage activation and polarization: nomenclature and experimental guidelines.

              Description of macrophage activation is currently contentious and confusing. Like the biblical Tower of Babel, macrophage activation encompasses a panoply of descriptors used in different ways. The lack of consensus on how to define macrophage activation in experiments in vitro and in vivo impedes progress in multiple ways, including the fact that many researchers still consider there to be only two types of activated macrophages, often termed M1 and M2. Here, we describe a set of standards encompassing three principles-the source of macrophages, definition of the activators, and a consensus collection of markers to describe macrophage activation-with the goal of unifying experimental standards for diverse experimental scenarios. Collectively, we propose a common framework for macrophage-activation nomenclature. Copyright © 2014 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Oncol
                Front Oncol
                Front. Oncol.
                Frontiers in Oncology
                Frontiers Media S.A.
                2234-943X
                12 March 2018
                2018
                : 8
                : 49
                Affiliations
                [1] 1Olivia Newton-John Cancer Research Institute, and La Trobe University School of Cancer Medicine , Heidelberg, VIC, Australia
                Author notes

                Edited by: Petranel Theresa Ferrao, University of Melbourne, Australia

                Reviewed by: Fiona Pixley, University of Western Australia, Australia; Sushil Kumar, Oregon Health & Science University, United States

                *Correspondence: Matthias Ernst, matthias.ernst@ 123456onjcri.org.au

                Specialty section: This article was submitted to Cancer Immunity and Immunotherapy, a section of the journal Frontiers in Oncology

                Article
                10.3389/fonc.2018.00049
                5858529
                29594035
                8858279a-2967-465c-9cb9-892f48d05d1a
                Copyright © 2018 Poh and Ernst.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 20 December 2017
                : 19 February 2018
                Page count
                Figures: 1, Tables: 4, Equations: 0, References: 195, Pages: 16, Words: 13942
                Funding
                Funded by: National Health and Medical Research Council 10.13039/501100000925
                Award ID: 1069024, 1067244, 1081373
                Categories
                Oncology
                Review

                Oncology & Radiotherapy
                macrophages,immunotherapy,macrophage polarization,inflammation,cancer
                Oncology & Radiotherapy
                macrophages, immunotherapy, macrophage polarization, inflammation, cancer

                Comments

                Comment on this article