9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Knock out hepatic Krüppel-like factor 16 (KLF16) improve myocardial damage and promoted myocardial protection of myocardial ischemia-reperfusion via anti-oxidative and anti-inflammation effects by TFAM/PPARβ signal passage

      research-article
      , , , , , , , , ,
      Bioengineered
      Taylor & Francis
      KLF16, TFAM, myocardial ischemia-reperfusion

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT

          This study is aimed at investigating mechanisms and effects of Krüppel-like factor 16 (KLF16) affects myocardial ischemia-reperfusion. Patients with myocardial ischemia-reperfusion and normal volunteer were collected. C57BL6J male mice were located left anterior descending coronary artery (LAD). H9c2 cell was induced with hydrogen peroxide (H2O2) and Lipopolysaccharide (LPS). Serum KLF16 mRNA expression was increased in myocardial ischemia-reperfusion. Serum mRNA of KLF16 was positive correlation with serum creatine kinase MB (CK-MB) or creatine kinase (CK) levels in patients with myocardial ischemia-reperfusion. The expression of KLF16 mRNA and protein in mice with myocardial ischemia-reperfusion were also increased. The inhibition of KLF16 reduced oxidative stress and inflammation, and presented myocardial ischemia (MI) in vivo model of myocardial ischemia-reperfusion. Mitochondrial transcription factor A ( TFAM)/peroxisome proliferator-activated receptor-beta (PPARβ) signal passage is target spot of KLF16 in Myocardial ischemia-reperfusion. TFAM interlink KLF16 in myocardial ischemia-reperfusion. TFAM participate in KLF16 affects myocardial ischemia-reperfusion. PPARβ promoter region KLF16 affects myocardial ischemia-reperfusion. These results firstly demonstrated that knock-out KLF16 reduced oxidative stress and inflammation, and presented MI in vivo model of myocardial ischemia-reperfusion through the induction of PPARβ by TFAM, may provide a novel therapeutic strategy for myocardial ischemia-reperfusion.

          Related collections

          Most cited references9

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Targeting MIAT reduces apoptosis of cardiomyocytes after ischemia/reperfusion injury

          ABSTRACT This study aims to investigate the role of targeting lncRNA myocardial infarction-associated transcript (MIAT) in protection against hypoxia/reoxygenation (H/R) injury in H9c2 cells in vitro and myocardial ischemia/reperfusion (I/R) injury in vivo by regulating expression of NF-kB and p53 upregulated modulator of apoptosis (PUMA). H9C2 cells were infected with lentivirus expressing the short-hairpin RNA direct against human MIAT gene (Lv-MIAT shRNA) or lentivirus expressing scrambled control (Lv-NC shRNA) or PUMA siRNA or p65 siRNA or their control siRNA respectively. Then the H9c2 cells were infected with Lv-shRNA to 2 hours of hypoxia (H) and 24 hour of reoxygenation (R). 100 ul of Lv-MIAT shRNA (1 × 108 PFU) or Lv-NC shRNA was transfected into mouse hearts, then the hearts were subjected to I/R (1h/72 h). We discovered targeting MIAT remarkably enhanced H9c2 cell viability, decreased H/R-induced cell apoptosis and LDH leakage and significantly decreased I/R-induced myocardial infarct size, reduced myocardial apoptosis and enhanced the heart function. Targeting MIAT downregulated p65 nuclear translocation, NF-κB activity and anti-apoptotic protein cleaved-caspase-3, Bax, and upregulated anti-apoptotic protein Bcl-2 induced by H/R or I/R. Our study suggests that targeting MIAT may protect against H9c2 cardiomyoblasts H/R injury or myocardial I/R injury via inhibition of cell apoptosis, mediated by NF-κB and PUMA signal pathway.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Lymphocyte Communication in Myocardial Ischemia/Reperfusion Injury

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              TFAM Enhances Fat Oxidation and Attenuates High Fat Diet Induced Insulin Resistance in Skeletal Muscle

              Diet-induced insulin resistance (IR) adversely affects human health and life span. We show that muscle-specific overexpression of human mitochondrial transcription factor A (TFAM) attenuates high-fat diet (HFD)–induced fat gain and IR in mice in conjunction with increased energy expenditure and reduced oxidative stress. These TFAM effects on muscle are shown to be exerted by molecular changes that are beyond its direct effect on mitochondrial DNA replication and transcription. TFAM augmented the muscle tricarboxylic acid cycle and citrate synthase facilitating energy expenditure. TFAM enhanced muscle glucose uptake despite increased fatty acid (FA) oxidation in concert with higher β-oxidation capacity to reduce the accumulation of IR-related carnitines and ceramides. TFAM also increased pAMPK expression, explaining enhanced PGC1α and PPARβ, and reversing HFD-induced GLUT4 and pAKT reductions. TFAM-induced mild uncoupling is shown to protect mitochondrial membrane potential against FA-induced uncontrolled depolarization. These coordinated changes conferred protection to TFAM mice against HFD-induced obesity and IR while reducing oxidative stress with potential translational opportunities.
                Bookmark

                Author and article information

                Journal
                Bioengineered
                Bioengineered
                Bioengineered
                Taylor & Francis
                2165-5979
                2165-5987
                25 November 2021
                2021
                25 November 2021
                : 12
                : 2
                : 10219-10231
                Affiliations
                [0001]Department of Cardiac Surgery, Beijing Chao-Yang Hospital, Capital Medical University; , Beijing, China
                Author notes
                CONTACT Pixiong Su pixongsu@ 123456sina.com Department of Cardiac Surgery, Beijing Chao-Yang Hospital, Capital Medical University; , No. 8 Gongti South Road, Chaoyang District, Beijing, China
                Author information
                https://orcid.org/0000-0002-7622-0793
                Article
                1982302
                10.1080/21655979.2021.1982302
                8810052
                34823421
                886b457c-b240-4cca-bac8-6816dac64bc5
                © 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                Page count
                Figures: 10, References: 10, Pages: 13
                Categories
                Research Article
                Research Paper

                Biomedical engineering
                klf16,tfam,myocardial ischemia-reperfusion
                Biomedical engineering
                klf16, tfam, myocardial ischemia-reperfusion

                Comments

                Comment on this article