44
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Alignment of Synaptic Vesicle Macromolecules with the Macromolecules in Active Zone Material that Direct Vesicle Docking

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Synaptic vesicles dock at active zones on the presynaptic plasma membrane of a neuron’s axon terminals as a precondition for fusing with the membrane and releasing their neurotransmitter to mediate synaptic impulse transmission. Typically, docked vesicles are next to aggregates of plasma membrane-bound macromolecules called active zone material (AZM). Electron tomography on tissue sections from fixed and stained axon terminals of active and resting frog neuromuscular junctions has led to the conclusion that undocked vesicles are directed to and held at the docking sites by the successive formation of stable connections between vesicle membrane proteins and proteins in different classes of AZM macromolecules. Using the same nanometer scale 3D imaging technology on appropriately stained frog neuromuscular junctions, we found that ∼10% of a vesicle’s luminal volume is occupied by a radial assembly of elongate macromolecules attached by narrow projections, nubs, to the vesicle membrane at ∼25 sites. The assembly’s chiral, bilateral shape is nearly the same vesicle to vesicle, and nubs, at their sites of connection to the vesicle membrane, are linked to macromolecules that span the membrane. For docked vesicles, the orientation of the assembly’s shape relative to the AZM and the presynaptic membrane is the same vesicle to vesicle, whereas for undocked vesicles it is not. The connection sites of most nubs on the membrane of docked vesicles are paired with the connection sites of the different classes of AZM macromolecules that regulate docking, and the membrane spanning macromolecules linked to these nubs are also attached to the AZM macromolecules. We conclude that the luminal assembly of macromolecules anchors in a particular arrangement vesicle membrane macromolecules, which contain the proteins that connect the vesicles to AZM macromolecules during docking. Undocked vesicles must move in a way that aligns this arrangement with the AZM macromolecules for docking to proceed.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          Mechanics of membrane fusion

          Diverse membrane fusion reactions in biology involve close contact between two lipid bilayers, followed by the local distortion of the individual bilayers and reformation into a single, merged membrane. We consider the structures and energies of the fusion intermediates identified in experimental and theoretical work on protein-free lipid bilayers. On the basis of this analysis, we then discuss the conserved fusion-through-hemifusion pathway of merger between biological membranes and propose that the entire progression, from the close juxtaposition of membrane bilayers to the expansion of a fusion pore, is controlled by protein-generated membrane stresses.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Synaptic vesicle exocytosis captured by quick freezing and correlated with quantal transmitter release

            We describe the design and operation of a machine that freezes biological tissues by contact with a cold metal block, which incorporates a timing circuit that stimulates frog neuromuscular junctions in the last few milliseconds before thay are frozen. We show freeze-fracture replicas of nerve terminals frozen during transmitter discharge, which display synpatic vesicles caught in the act of exocytosis. We use 4-aminopyridine (4-AP) to increase the number of transmitter quanta discharged with each nerve impulse, and show that the number of exocytotic vesicles caught by quick-freezing increases commensurately, indicating that one vesicle undergoes exocytosis for each quantum that is discharged. We perform statistical analyses on the spatial distribution of synaptic vesicle discharge sites along the "active zones" that mark the secretory regions of these nerves, and show that individual vesicles fuse with the plasma membrane independent of one another, as expected from physiological demonstrations that quanta are discharged independently. Thus, the utility of quick- freezing as a technique to capture biological processes as evanescent as synaptic transmission has been established. An appendix describes a new capacitance method to measure freezing rates, which shows that the "temporal resolution" of our quick-freezing technique is 2 ms or better.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Optical analysis of synaptic vesicle recycling at the frog neuromuscular junction.

              The fluorescent dyes FM1-43 and RH414 label motor nerve terminals in an activity-dependent fashion that involves dye uptake by synaptic vesicles that are recycling. This allows optical monitoring of vesicle recycling in living nerve terminals to determine how recycled vesicles reenter the vesicle pool. The results suggest that recycled vesicles mix with the pool morphologically and functionally. One complete cycle of release of transmitter, recycling of a vesicle, and rerelease of transmitter appears to take about 1 minute.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                22 July 2013
                : 8
                : 7
                : e69410
                Affiliations
                [1 ]Department of Neurobiology, Stanford University School of Medicine, Stanford, California, United States of America
                [2 ]Department of Applied Physics, Stanford University School of Humanities and Sciences, Stanford, California, United States of America
                [3 ]Department of Physics, Stanford University School of Humanities and Sciences, Stanford, California, United States of America
                [4 ]Department of Biology, Texas A&M University, College Station, Texas, United States of America
                Virginia Tech Carilion Research Institute, United States of America
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: MLH JAS JX JHJ RMM UJM. Performed the experiments: MLH JAS JX JHJ RMM UJM. Analyzed the data: MLH JAS JX JHJ RMM UJM. Contributed reagents/materials/analysis tools: MLH JAS JX JHJ RMM UJM. Wrote the paper: MLH JAS JX JHJ RMM UJM.

                Article
                PONE-D-13-17794
                10.1371/journal.pone.0069410
                3718691
                23894473
                8879794e-9aea-45ea-b139-929152b65f9d
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 1 May 2013
                : 7 June 2013
                Page count
                Pages: 20
                Funding
                This research was funded by the National Institute of Neurological Disorders and Stroke (NS014506 and NS007158), The National Institute of Mental Health (Human Brain Project/Neuroinformatics, MH068065), and a postdoctoral fellowship from the National Science and Engineering Research Council of Canada (to JAS). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Anatomy and Physiology
                Neurological System
                Peripheral Nervous System
                Synapses
                Cell Physiology
                Biochemistry
                Macromolecular Assemblies
                Biophysics
                Macromolecular Assemblies
                Molecular Cell Biology
                Cellular Structures
                Subcellular Organelles
                Neuroscience
                Neurophysiology
                Neuromuscular Junction
                Peripheral Nervous System
                Synapses
                Motor Systems
                Neurotransmitters
                Medicine
                Anatomy and Physiology
                Neurological System
                Peripheral Nervous System
                Synapses
                Cell Physiology

                Uncategorized
                Uncategorized

                Comments

                Comment on this article