39
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      MicroRNAs and phylogenomics resolve the relationships of Tardigrada and suggest that velvet worms are the sister group of Arthropoda

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Morphological data traditionally group Tardigrada (water bears), Onychophora (velvet worms), and Arthropoda (e.g., spiders, insects, and their allies) into a monophyletic group of invertebrates with walking appendages known as the Panarthropoda. However, molecular data generally do not support the inclusion of tardigrades within the Panarthropoda, but instead place them closer to Nematoda (roundworms). Here we present results from the analyses of two independent genomic datasets, expressed sequence tags (ESTs) and microRNAs (miRNAs), which congruently resolve the phylogenetic relationships of Tardigrada. Our EST analyses, based on 49,023 amino acid sites from 255 proteins, significantly support a monophyletic Panarthropoda including Tardigrada and suggest a sister group relationship between Arthropoda and Onychophora. Using careful experimental manipulations--comparisons of model fit, signal dissection, and taxonomic pruning--we show that support for a Tardigrada + Nematoda group derives from the phylogenetic artifact of long-branch attraction. Our small RNA libraries fully support our EST results; no miRNAs were found to link Tardigrada and Nematoda, whereas all panarthropods were found to share one unique miRNA (miR-276). In addition, Onychophora and Arthropoda were found to share a second miRNA (miR-305). Our study confirms the monophyly of the legged ecdysozoans, shows that past support for a Tardigrada + Nematoda group was due to long-branch attraction, and suggests that the velvet worms are the sister group to the arthropods.

          Related collections

          Most cited references36

          • Record: found
          • Abstract: found
          • Article: not found

          Assessing the root of bilaterian animals with scalable phylogenomic methods.

          A clear picture of animal relationships is a prerequisite to understand how the morphological and ecological diversity of animals evolved over time. Among others, the placement of the acoelomorph flatworms, Acoela and Nemertodermatida, has fundamental implications for the origin and evolution of various animal organ systems. Their position, however, has been inconsistent in phylogenetic studies using one or several genes. Furthermore, Acoela has been among the least stable taxa in recent animal phylogenomic analyses, which simultaneously examine many genes from many species, while Nemertodermatida has not been sampled in any phylogenomic study. New sequence data are presented here from organisms targeted for their instability or lack of representation in prior analyses, and are analysed in combination with other publicly available data. We also designed new automated explicit methods for identifying and selecting common genes across different species, and developed highly optimized supercomputing tools to reconstruct relationships from gene sequences. The results of the work corroborate several recently established findings about animal relationships and provide new support for the placement of other groups. These new data and methods strongly uphold previous suggestions that Acoelomorpha is sister clade to all other bilaterian animals, find diminishing evidence for the placement of the enigmatic Xenoturbella within Deuterostomia, and place Cycliophora with Entoprocta and Ectoprocta. The work highlights the implications that these arrangements have for metazoan evolution and permits a clearer picture of ancestral morphologies and life histories in the deep past.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Early origins and evolution of microRNAs and Piwi-interacting RNAs in animals.

            In bilaterian animals, such as humans, flies and worms, hundreds of microRNAs (miRNAs), some conserved throughout bilaterian evolution, collectively regulate a substantial fraction of the transcriptome. In addition to miRNAs, other bilaterian small RNAs, known as Piwi-interacting RNAs (piRNAs), protect the genome from transposons. Here we identify small RNAs from animal phyla that diverged before the emergence of the Bilateria. The cnidarian Nematostella vectensis (starlet sea anemone), a close relative to the Bilateria, possesses an extensive repertoire of miRNA genes, two classes of piRNAs and a complement of proteins specific to small-RNA biology comparable to that of humans. The poriferan Amphimedon queenslandica (sponge), one of the simplest animals and a distant relative of the Bilateria, also possesses miRNAs, both classes of piRNAs and a full complement of the small-RNA machinery. Animal miRNA evolution seems to have been relatively dynamic, with precursor sizes and mature miRNA sequences differing greatly between poriferans, cnidarians and bilaterians. Nonetheless, miRNAs and piRNAs have been available as classes of riboregulators to shape gene expression throughout the evolution and radiation of animal phyla.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Phylogenomics revives traditional views on deep animal relationships.

              The origin of many of the defining features of animal body plans, such as symmetry, nervous system, and the mesoderm, remains shrouded in mystery because of major uncertainty regarding the emergence order of the early branching taxa: the sponge groups, ctenophores, placozoans, cnidarians, and bilaterians. The "phylogenomic" approach [1] has recently provided a robust picture for intrabilaterian relationships [2, 3] but not yet for more early branching metazoan clades. We have assembled a comprehensive 128 gene data set including newly generated sequence data from ctenophores, cnidarians, and all four main sponge groups. The resulting phylogeny yields two significant conclusions reviving old views that have been challenged in the molecular era: (1) that the sponges (Porifera) are monophyletic and not paraphyletic as repeatedly proposed [4-9], thus undermining the idea that ancestral metazoans had a sponge-like body plan; (2) that the most likely position for the ctenophores is together with the cnidarians in a "coelenterate" clade. The Porifera and the Placozoa branch basally with respect to a moderately supported "eumetazoan" clade containing the three taxa with nervous system and muscle cells (Cnidaria, Ctenophora, and Bilateria). This new phylogeny provides a stimulating framework for exploring the important changes that shaped the body plans of the early diverging phyla.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                September 20 2011
                September 20 2011
                September 06 2011
                September 20 2011
                : 108
                : 38
                : 15920-15924
                Article
                10.1073/pnas.1105499108
                3179045
                21896763
                8883f295-9732-4d7c-b4bb-4ddcf6ca1af6
                © 2011
                History

                Comments

                Comment on this article