118
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The evolutionary significance of polyploidy

      , ,
      Nature Reviews Genetics
      Springer Nature

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Polyploidy occurs frequently but is usually detrimental to survival; thus, few polyploids survive in the long term. Here, evidence linking the short-term evolutionary success of polyploids to environmental upheaval is reviewed and possible longer-term evolutionary benefits of polyploidy are discussed.

          Related collections

          Most cited references123

          • Record: found
          • Abstract: found
          • Article: not found

          Bias in plant gene content following different sorts of duplication: tandem, whole-genome, segmental, or by transposition.

          Each mode of gene duplication (tandem, tetraploid, segmental, transpositional) retains genes in a biased manner. A reciprocal relationship exists between plant genes retained postpaleotetraploidy versus genes retained after an ancient tandem duplication. Among the models (C, neofunctionalization, balanced gene drive) and ideas that might explain this relationship, only balanced gene drive predicts reciprocity. The gene balance hypothesis explains that more "connected" genes--by protein-protein interactions in a heteromer, for example--are less likely to be retained as a tandem or transposed duplicate and are more likely to be retained postpaleotetraploidy; otherwise, selectively negative dosage effects are created. Biased duplicate retention is an instant and neutral by-product, a spandrel, of purifying selection. Balanced gene drive expanded plant gene families, including those encoding proteasomal proteins, protein kinases, motors, and transcription factors, with each paleotetraploidy, which could explain trends involving complexity. Balanced gene drive is a saltation mechanism in the mutationist tradition.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The origins of C4 grasslands: integrating evolutionary and ecosystem science.

            The evolution of grasses using C4 photosynthesis and their sudden rise to ecological dominance 3 to 8 million years ago is among the most dramatic examples of biome assembly in the geological record. A growing body of work suggests that the patterns and drivers of C4 grassland expansion were considerably more complex than originally assumed. Previous research has benefited substantially from dialog between geologists and ecologists, but current research must now integrate fully with phylogenetics. A synthesis of grass evolutionary biology with grassland ecosystem science will further our knowledge of the evolution of traits that promote dominance in grassland systems and will provide a new context in which to evaluate the relative importance of C4 photosynthesis in transforming ecosystems across large regions of Earth.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Duplication and divergence: the evolution of new genes and old ideas.

              Over 35 years ago, Susumu Ohno stated that gene duplication was the single most important factor in evolution. He reiterated this point a few years later in proposing that without duplicated genes the creation of metazoans, vertebrates, and mammals from unicellular organisms would have been impossible. Such big leaps in evolution, he argued, required the creation of new gene loci with previously nonexistent functions. Bold statements such as these, combined with his proposal that at least one whole-genome duplication event facilitated the evolution of vertebrates, have made Ohno an icon in the literature on genome evolution. However, discussion on the occurrence and consequences of gene and genome duplication events has a much longer, and often neglected, history. Here we review literature dealing with the occurrence and consequences of gene duplication, beginning in 1911. We document conceptual and technological advances in gene duplication research from this early research in comparative cytology up to recent research on whole genomes, "transcriptomes," and "interactomes."
                Bookmark

                Author and article information

                Journal
                Nature Reviews Genetics
                Nat Rev Genet
                Springer Nature
                1471-0056
                1471-0064
                May 15 2017
                May 15 2017
                :
                :
                Article
                10.1038/nrg.2017.26
                28502977
                888bbb97-95ad-4a27-9294-1f4ddff4a897
                © 2017
                History

                Comments

                Comment on this article