67
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mutually exclusive redox forms of HMGB1 promote cell recruitment or proinflammatory cytokine release

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          HMGB1 orchestrates leukocyte recruitment and their induction to secrete inflammatory cytokines by switching between mutually exclusive redox states.

          Abstract

          Tissue damage causes inflammation, by recruiting leukocytes and activating them to release proinflammatory mediators. We show that high-mobility group box 1 protein (HMGB1) orchestrates both processes by switching among mutually exclusive redox states. Reduced cysteines make HMGB1 a chemoattractant, whereas a disulfide bond makes it a proinflammatory cytokine and further cysteine oxidation to sulfonates by reactive oxygen species abrogates both activities. We show that leukocyte recruitment and activation can be separated. A nonoxidizable HMGB1 mutant in which serines replace all cysteines (3S-HMGB1) does not promote cytokine production, but is more effective than wild-type HMGB1 in recruiting leukocytes in vivo. BoxA, a HMGB1 inhibitor, interferes with leukocyte recruitment but not with activation. We detected the different redox forms of HMGB1 ex vivo within injured muscle. HMGB1 is completely reduced at first and disulfide-bonded later. Thus, HMGB1 orchestrates both key events in sterile inflammation, leukocyte recruitment and their induction to secrete inflammatory cytokines, by adopting mutually exclusive redox states.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: not found

          The nuclear protein HMGB1 is secreted by monocytes via a non-classical, vesicle-mediated secretory pathway.

          HMGB1, a non-histone nuclear factor, acts extracellularly as a mediator of delayed endotoxin lethality, which raises the question of how a nuclear protein can reach the extracellular space. We show that activation of monocytes results in the redistribution of HMGB1 from the nucleus to cytoplasmic organelles, which display ultrastructural features of endolysosomes. HMGB1 secretion is induced by stimuli triggering lysosome exocytosis. The early mediator of inflammation interleukin (IL)-1beta is also secreted by monocytes through a non-classical pathway involving exocytosis of secretory lysosomes. However, in keeping with their respective role of early and late inflammatory factors, IL-1beta and HMGB1 respond at different times to different stimuli: IL-1beta secretion is induced earlier by ATP, autocrinally released by monocytes soon after activation; HMGB1 secretion is triggered by lysophosphatidylcholine, generated later in the inflammation site. Thus, in monocytes, non-classical secretion can occur through vescicle compartments that are at least partially distinct.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            High-mobility group box-1 in ischemia-reperfusion injury of the heart.

            High-mobility group box-1 (HMGB1) is a nuclear factor released by necrotic cells and by activated immune cells. HMGB1 signals via members of the toll-like receptor family and the receptor for advanced glycation end products (RAGE). Although HMGB1 has been implicated in ischemia/reperfusion (I/R) injury of the liver and lung, its role in I/R injury of the heart remains unclear. Here, we demonstrate that HMGB1 acts as an early mediator of inflammation and organ damage in I/R injury of the heart. HMGB1 levels were already elevated 30 minutes after hypoxia in vitro and in ischemic injury of the heart in vivo. Treatment of mice with recombinant HMGB1 worsened I/R injury, whereas treatment with HMGB1 box A significantly reduced infarct size and markers of tissue damage. In addition, HMGB1 inhibition with recombinant HMGB1 box A suggested an involvement of the mitogen-activated protein kinases jun N-terminal kinase and extracellular signal-regulated kinase 1/2, as well as the nuclear transcription factor nuclear factor-kappaB in I/R injury. Interestingly, infarct size and markers of tissue damage were not affected by administration of recombinant HMGB1 or HMGB1 antagonists in RAGE(-/-) mice, which demonstrated significantly reduced damage in reperfused hearts compared with wild-type mice. Coincubation studies using recombinant HMGB1 in vitro induced an inflammatory response in isolated macrophages from wild-type mice but not in macrophages from RAGE(-/-) mice. HMGB1 plays a major role in the early event of I/R injury by binding to RAGE, resulting in the activation of proinflammatory pathways and enhanced myocardial injury. Therefore, blockage of HMGB1 might represent a novel therapeutic strategy in I/R injury.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              HMGB1 loves company.

              HMGB1, outside of a cell, is a trigger of inflammation and a stimulus for tissue reconstruction; the balance may depend on the complexes it forms with other molecules. HMGB1 is the prime example of a danger signal that originates from the damaged self rather than from invading pathogens. HMGB1 is released by cells that die traumatically and is secreted by cells destined to die and by activated cells of the innate immunity system. As a danger signal, HMGB1 is expected to trigger inflammation, but recent reports indicate that pure recombinant HMGB1 has no proinflammatory activity and only acts as a chemoattractant and a mitogen. However, HMGB1 forms highly inflammatory complexes with ssDNA, LPS, IL-1beta, and nucleosomes, which interact with TLR9, TLR4, IL-1R, and TLR2 receptors, respectively. Thus, HMGB1 has dual activities, solo or in company; I speculate that this may serve our body's necessity to sacrifice or reconstruct tissues as required by the presence or absence of pathogens.
                Bookmark

                Author and article information

                Journal
                J Exp Med
                J. Exp. Med
                jem
                The Journal of Experimental Medicine
                The Rockefeller University Press
                0022-1007
                1540-9538
                27 August 2012
                : 209
                : 9
                : 1519-1528
                Affiliations
                [1 ]Division of Genetics and Cell Biology, San Raffaele Scientific Institute, 20132 Milan, Italy
                [2 ]HMGBiotech Srl, 20133 Milan, Italy
                [3 ]Institute for Research in Biomedicine, CH-6500 Bellinzona, Switzerland
                [4 ]Medical Research Council Centre for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool L69 3BX, England, UK
                [5 ]San Raffaele University, 20132 Milan, Italy
                [6 ]Feinstein Institute for Medical Research, Manhasset, NY 11030
                [7 ]Departments of Women’s and Children’s Health, Karolinska Institute and Karolinska University Hospital, SE-171 77 Stockholm, Sweden
                Author notes
                CORRESPONDENCE Marco E. Bianchi: bianchi.marco@ 123456hsr.it
                Article
                20120189
                10.1084/jem.20120189
                3428943
                22869893
                8891eabe-1af1-469f-8566-fc3738dd01f5
                © 2012 Venereau et al

                This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/).

                History
                : 25 January 2012
                : 17 July 2012
                Categories
                Brief Definitive Report

                Medicine
                Medicine

                Comments

                Comment on this article