+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Beneficiary Role for Neuraminidase in Influenza Virus Penetration through the Respiratory Mucus

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Swine influenza virus (SIV) has a strong tropism for pig respiratory mucosa, which consists of a mucus layer, epithelium, basement membrane and lamina propria. Sialic acids present on the epithelial surface have long been considered to be determinants of influenza virus tropism. However, mucus which is also rich in sialic acids may serve as the first barrier of selection. It was investigated how influenza virus interacts with the mucus to infect epithelial cells. Two techniques were applied to track SIV H1N1 in porcine mucus. The microscopic diffusion of SIV particles in the mucus was analyzed by single particle tracking (SPT), and the macroscopic penetration of SIV through mucus was studied by a virus in-capsule-mucus penetration system, followed by visualizing the translocation of the virions with time by immunofluorescence staining. Furthermore, the effects of neuraminidase on SIV getting through or binding to the mucus were studied by using zanamivir, a neuraminidase inhibitor (NAI), and Arthrobacter ureafaciens neuraminidase. The distribution of the diffusion coefficient shows that 70% of SIV particles were entrapped, while the rest diffused freely in the mucus. Additionally, SIV penetrated the porcine mucus with time, reaching a depth of 65 µm at 30 min post virus addition, 2 fold of that at 2 min. Both the microscopic diffusion and macroscopic penetration were largely diminished by NAI, while were clearly increased by the effect of exogenous neuraminidase. Moreover, the exogenous neuraminidase sufficiently prevented the binding of SIV to mucus which was reversely enhanced by effect of NAI. These findings clearly show that the neuraminidase helps SIV move through the mucus, which is important for the virus to reach and infect epithelial cells and eventually become shed into the lumen of the respiratory tract.

          Related collections

          Most cited references 49

          • Record: found
          • Abstract: found
          • Article: not found

          Evolution and ecology of influenza A viruses.

          In this review we examine the hypothesis that aquatic birds are the primordial source of all influenza viruses in other species and study the ecological features that permit the perpetuation of influenza viruses in aquatic avian species. Phylogenetic analysis of the nucleotide sequence of influenza A virus RNA segments coding for the spike proteins (HA, NA, and M2) and the internal proteins (PB2, PB1, PA, NP, M, and NS) from a wide range of hosts, geographical regions, and influenza A virus subtypes support the following conclusions. (i) Two partly overlapping reservoirs of influenza A viruses exist in migrating waterfowl and shorebirds throughout the world. These species harbor influenza viruses of all the known HA and NA subtypes. (ii) Influenza viruses have evolved into a number of host-specific lineages that are exemplified by the NP gene and include equine Prague/56, recent equine strains, classical swine and human strains, H13 gull strains, and all other avian strains. Other genes show similar patterns, but with extensive evidence of genetic reassortment. Geographical as well as host-specific lineages are evident. (iii) All of the influenza A viruses of mammalian sources originated from the avian gene pool, and it is possible that influenza B viruses also arose from the same source. (iv) The different virus lineages are predominantly host specific, but there are periodic exchanges of influenza virus genes or whole viruses between species, giving rise to pandemics of disease in humans, lower animals, and birds. (v) The influenza viruses currently circulating in humans and pigs in North America originated by transmission of all genes from the avian reservoir prior to the 1918 Spanish influenza pandemic; some of the genes have subsequently been replaced by others from the influenza gene pool in birds. (vi) The influenza virus gene pool in aquatic birds of the world is probably perpetuated by low-level transmission within that species throughout the year. (vii) There is evidence that most new human pandemic strains and variants have originated in southern China. (viii) There is speculation that pigs may serve as the intermediate host in genetic exchange between influenza viruses in avian and humans, but experimental evidence is lacking. (ix) Once the ecological properties of influenza viruses are understood, it may be possible to interdict the introduction of new influenza viruses into humans.
            • Record: found
            • Abstract: found
            • Article: not found

            Single-particle tracking: applications to membrane dynamics.

            Measurements of trajectories of individual proteins or lipids in the plasma membrane of cells show a variety of types of motion. Brownian motion is observed, but many of the particles undergo non-Brownian motion, including directed motion, confined motion, and anomalous diffusion. The variety of motion leads to significant effects on the kinetics of reactions among membrane-bound species and requires a revision of existing views of membrane structure and dynamics.
              • Record: found
              • Abstract: found
              • Article: not found

              Mucins in the mucosal barrier to infection

              The mucosal tissues of the gastrointestinal, respiratory, reproductive, and urinary tracts, and the surface of the eye present an enormous surface area to the exterior environment. All of these tissues are covered with resident microbial flora, which vary considerably in composition and complexity. Mucosal tissues represent the site of infection or route of access for the majority of viruses, bacteria, yeast, protozoa, and multicellular parasites that cause human disease. Mucin glycoproteins are secreted in large quantities by mucosal epithelia, and cell surface mucins are a prominent feature of the apical glycocalyx of all mucosal epithelia. In this review, we highlight the central role played by mucins in accommodating the resident commensal flora and limiting infectious disease, interplay between underlying innate and adaptive immunity and mucins, and the strategies used by successful mucosal pathogens to subvert or avoid the mucin barrier, with a particular focus on bacteria. Supplementary information The online version of this article (doi:10.1038/mi.2008.5) contains supplementary material, which is available to authorized users.

                Author and article information

                Role: Editor
                PLoS One
                PLoS ONE
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                15 October 2014
                : 9
                : 10
                [1 ]Laboratory of Virology, Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
                [2 ]Laboratory of General Biochemistry and Physical Pharmacy, Ghent University, Ghent, Belgium
                [3 ]Center for Nano- and Biophotonics, Ghent University, Ghent, Belgium
                Mount Sinai School of Medicine, United States of America
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: XY LS KF KVR HN. Performed the experiments: XY. Analyzed the data: XY LS KF RX HN. Contributed reagents/materials/analysis tools: KF RX KB KVR. Wrote the paper: XY.


                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                Page count
                Pages: 11
                This research was supported by the Concerted Research Action 01G01311 of the Research Council of Ghent University, Belgium. HJN is a member of BELVIR consortium (IAP, phase VII) sponsored by Belgian Science Policy (BELSPO). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Research Article
                Biology and Life Sciences
                Veterinary Science
                Veterinary Diseases
                Veterinary Virology
                Custom metadata
                The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper.



                Comment on this article