19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      High-Intensity Intermittent Training Positively Affects Aerobic and Anaerobic Performance in Judo Athletes Independently of Exercise Mode

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose: The present study investigated the effects of high-intensity intermittent training (HIIT) on lower- and upper-body graded exercise and high-intensity intermittent exercise (HIIE, four Wingate bouts) performance, and on physiological and muscle damage markers responses in judo athletes.

          Methods: Thirty-five subjects were randomly allocated to a control group ( n = 8) or to one of the following HIIT groups ( n = 9 for each) and tested pre- and post-four weeks (2 training d·wk −1): (1) lower-body cycle-ergometer; (2) upper-body cycle-ergometer; (3) uchi-komi (judo technique entrance). All HIIT were constituted by two blocks of 10 sets of 20 s of all out effort interspersed by 10 s set intervals and 5-min between blocks.

          Results: For the upper-body group there was an increase in maximal aerobic power in graded upper-body exercise test (12.3%). The lower-body group increased power at onset blood lactate in graded upper-body exercise test (22.1%). The uchi-komi group increased peak power in upper- (16.7%) and lower-body (8.5%), while the lower-body group increased lower-body mean power (14.2%) during the HIIE. There was a decrease in the delta blood lactate for the uchi-komi training group and in the third and fourth bouts for the upper-body training group. Training induced testosterone-cortisol ratio increased in the lower-body HIIE for the lower-body (14.9%) and uchi-komi (61.4%) training groups.

          Conclusion: Thus, short-duration low-volume HIIT added to regular judo training was able to increase upper-body aerobic power, lower- and upper-body HIIE performance.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          High-intensity interval training, solutions to the programming puzzle: Part I: cardiopulmonary emphasis.

          High-intensity interval training (HIT), in a variety of forms, is today one of the most effective means of improving cardiorespiratory and metabolic function and, in turn, the physical performance of athletes. HIT involves repeated short-to-long bouts of rather high-intensity exercise interspersed with recovery periods. For team and racquet sport players, the inclusion of sprints and all-out efforts into HIT programmes has also been shown to be an effective practice. It is believed that an optimal stimulus to elicit both maximal cardiovascular and peripheral adaptations is one where athletes spend at least several minutes per session in their 'red zone,' which generally means reaching at least 90% of their maximal oxygen uptake (VO2max). While use of HIT is not the only approach to improve physiological parameters and performance, there has been a growth in interest by the sport science community for characterizing training protocols that allow athletes to maintain long periods of time above 90% of VO2max (T@VO2max). In addition to T@VO2max, other physiological variables should also be considered to fully characterize the training stimulus when programming HIT, including cardiovascular work, anaerobic glycolytic energy contribution and acute neuromuscular load and musculoskeletal strain. Prescription for HIT consists of the manipulation of up to nine variables, which include the work interval intensity and duration, relief interval intensity and duration, exercise modality, number of repetitions, number of series, as well as the between-series recovery duration and intensity. The manipulation of any of these variables can affect the acute physiological responses to HIT. This article is Part I of a subsequent II-part review and will discuss the different aspects of HIT programming, from work/relief interval manipulation to the selection of exercise mode, using different examples of training cycles from different sports, with continued reference to T@VO2max and cardiovascular responses. Additional programming and periodization considerations will also be discussed with respect to other variables such as anaerobic glycolytic system contribution (as inferred from blood lactate accumulation), neuromuscular load and musculoskeletal strain (Part II).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Short-term sprint interval versus traditional endurance training: similar initial adaptations in human skeletal muscle and exercise performance.

            Brief, intense exercise training may induce metabolic and performance adaptations comparable to traditional endurance training. However, no study has directly compared these diverse training strategies in a standardized manner. We therefore examined changes in exercise capacity and molecular and cellular adaptations in skeletal muscle after low volume sprint-interval training (SIT) and high volume endurance training (ET). Sixteen active men (21 +/- 1 years, ) were assigned to a SIT or ET group (n = 8 each) and performed six training sessions over 14 days. Each session consisted of either four to six repeats of 30 s 'all out' cycling at approximately 250% with 4 min recovery (SIT) or 90-120 min continuous cycling at approximately 65% (ET). Training time commitment over 2 weeks was approximately 2.5 h for SIT and approximately 10.5 h for ET, and total training volume was approximately 90% lower for SIT versus ET ( approximately 630 versus approximately 6500 kJ). Training decreased the time required to complete 50 and 750 kJ cycling time trials, with no difference between groups (main effects, P
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Justification of the 4-mmol/l lactate threshold.

                Bookmark

                Author and article information

                Contributors
                Journal
                Front Physiol
                Front Physiol
                Front. Physiol.
                Frontiers in Physiology
                Frontiers Media S.A.
                1664-042X
                28 June 2016
                2016
                : 7
                : 268
                Affiliations
                [1] 1Department of Sport, School of Physical Education and Sport, University of São Paulo São Paulo, Brazil
                [2] 2Exercise and Immunometabolism Research Group, Department of Physical Education, Paulista State University Presidente Prudente, Brazil
                Author notes

                Edited by: Johnny Padulo, University eCampus, Italy

                Reviewed by: Nicola Luigi Bragazzi, University of Genoa, Italy; Christian Doria, University “G. d'Annunzio” Chieti-Pescara, Italy

                *Correspondence: Emerson Franchini efranchini@ 123456usp.br

                This article was submitted to Exercise Physiology, a section of the journal Frontiers in Physiology

                Article
                10.3389/fphys.2016.00268
                4923181
                27445856
                88977085-10b9-4818-be36-5bfa426d670c
                Copyright © 2016 Franchini, Julio, Panissa, Lira, Gerosa-Neto and Branco.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 28 April 2016
                : 16 June 2016
                Page count
                Figures: 3, Tables: 3, Equations: 0, References: 33, Pages: 12, Words: 9990
                Funding
                Funded by: Fundação de Amparo à Pesquisa do Estado de São Paulo 10.13039/501100001807
                Award ID: 2012/00220-8
                Categories
                Physiology
                Original Research

                Anatomy & Physiology
                combat sports,high-intensity intermittent training,blood lactate,muscle damage markers,oxygen uptake,hormones

                Comments

                Comment on this article