18
views
0
recommends
+1 Recommend
2 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Species Identification in Malaise Trap Samples by DNA Barcoding Based on NGS Technologies and a Scoring Matrix

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The German Barcoding initiatives BFB and GBOL have generated a reference library of more than 16,000 metazoan species, which is now ready for applications concerning next generation molecular biodiversity assessments. To streamline the barcoding process, we have developed a meta-barcoding pipeline: We pre-sorted a single malaise trap sample (obtained during one week in August 2014, southern Germany) into 12 arthropod orders and extracted DNA from pooled individuals of each order separately, in order to facilitate DNA extraction and avoid time consuming single specimen selection. Aliquots of each ordinal-level DNA extract were combined to roughly simulate a DNA extract from a non-sorted malaise sample. Each DNA extract was amplified using four primer sets targeting the CO1 -5’ fragment. The resulting PCR products (150-400bp) were sequenced separately on an Illumina Mi-SEQ platform, resulting in 1.5 million sequences and 5,500 clusters (coverage ≥10; CD-HIT-EST, 98%). Using a total of 120,000 DNA barcodes of identified, Central European Hymenoptera, Coleoptera, Diptera, and Lepidoptera downloaded from BOLD we established a reference sequence database for a local CUSTOM BLAST. This allowed us to identify 529 Barcode Index Numbers (BINs) from our sequence clusters derived from pooled Malaise trap samples. We introduce a scoring matrix based on the sequence match percentages of each amplicon in order to gain plausibility for each detected BIN, leading to 390 high score BINs in the sorted samples; whereas 268 of these high score BINs (69%) could be identified in the combined sample. The results indicate that a time consuming presorting process will yield approximately 30% more high score BINs compared to the non-sorted sample in our case. These promising results indicate that a fast, efficient and reliable analysis of next generation data from malaise trap samples can be achieved using this pipeline.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: application for characterizing coral reef fish gut contents

          Introduction The PCR-based analysis of homologous genes has become one of the most powerful approaches for species detection and identification, particularly with the recent availability of Next Generation Sequencing platforms (NGS) making it possible to identify species composition from a broad range of environmental samples. Identifying species from these samples relies on the ability to match sequences with reference barcodes for taxonomic identification. Unfortunately, most studies of environmental samples have targeted ribosomal markers, despite the fact that the mitochondrial Cytochrome c Oxidase subunit I gene (COI) is by far the most widely available sequence region in public reference libraries. This is largely because the available versatile (“universal”) COI primers target the 658 barcoding region, whose size is considered too large for many NGS applications. Moreover, traditional barcoding primers are known to be poorly conserved across some taxonomic groups. Results We first design a new PCR primer within the highly variable mitochondrial COI region, the “mlCOIintF” primer. We then show that this newly designed forward primer combined with the “jgHCO2198” reverse primer to target a 313 bp fragment performs well across metazoan diversity, with higher success rates than versatile primer sets traditionally used for DNA barcoding (i.e. LCO1490/HCO2198). Finally, we demonstrate how the shorter COI fragment coupled with an efficient bioinformatics pipeline can be used to characterize species diversity from environmental samples by pyrosequencing. We examine the gut contents of three species of planktivorous and benthivorous coral reef fish (family: Apogonidae and Holocentridae). After the removal of dubious COI sequences, we obtained a total of 334 prey Operational Taxonomic Units (OTUs) belonging to 14 phyla from 16 fish guts. Of these, 52.5% matched a reference barcode (>98% sequence similarity) and an additional 32% could be assigned to a higher taxonomic level using Bayesian assignment. Conclusions The molecular analysis of gut contents targeting the 313 COI fragment using the newly designed mlCOIintF primer in combination with the jgHCO2198 primer offers enormous promise for metazoan metabarcoding studies. We believe that this primer set will be a valuable asset for a range of applications from large-scale biodiversity assessments to food web studies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Reliable, verifiable and efficient monitoring of biodiversity via metabarcoding.

            To manage and conserve biodiversity, one must know what is being lost, where, and why, as well as which remedies are likely to be most effective. Metabarcoding technology can characterise the species compositions of mass samples of eukaryotes or of environmental DNA. Here, we validate metabarcoding by testing it against three high-quality standard data sets that were collected in Malaysia (tropical), China (subtropical) and the United Kingdom (temperate) and that comprised 55,813 arthropod and bird specimens identified to species level with the expenditure of 2,505 person-hours of taxonomic expertise. The metabarcode and standard data sets exhibit statistically correlated alpha- and beta-diversities, and the two data sets produce similar policy conclusions for two conservation applications: restoration ecology and systematic conservation planning. Compared with standard biodiversity data sets, metabarcoded samples are taxonomically more comprehensive, many times quicker to produce, less reliant on taxonomic expertise and auditable by third parties, which is essential for dispute resolution. © 2013 The Authors. Ecology Letters published by John Wiley & Sons Ltd and CNRS.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              A universal DNA mini-barcode for biodiversity analysis

              Background The goal of DNA barcoding is to develop a species-specific sequence library for all eukaryotes. A 650 bp fragment of the cytochrome c oxidase 1 (CO1) gene has been used successfully for species-level identification in several animal groups. It may be difficult in practice, however, to retrieve a 650 bp fragment from archival specimens, (because of DNA degradation) or from environmental samples (where universal primers are needed). Results We used a bioinformatics analysis using all CO1 barcode sequences from GenBank and calculated the probability of having species-specific barcodes for varied size fragments. This analysis established the potential of much smaller fragments, mini-barcodes, for identifying unknown specimens. We then developed a universal primer set for the amplification of mini-barcodes. We further successfully tested the utility of this primer set on a comprehensive set of taxa from all major eukaryotic groups as well as archival specimens. Conclusion In this study we address the important issue of minimum amount of sequence information required for identifying species in DNA barcoding. We establish a novel approach based on a much shorter barcode sequence and demonstrate its effectiveness in archival specimens. This approach will significantly broaden the application of DNA barcoding in biodiversity studies.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                18 May 2016
                2016
                : 11
                : 5
                : e0155497
                Affiliations
                [1 ]SNSB, Bavarian State Collection of Zoology, Münchhausenstrasse 21, 81247, München, Germany
                [2 ]LGC Genomics GmbH, Ostendstraße 25, TGS Haus 8, 12459, Berlin, Germany
                [3 ]GeoBio-Center der LMU München, München, Germany
                Consiglio Nazionale delle Ricerche (CNR), ITALY
                Author notes

                Competing Interests: The authors BF and SA work for an organization (LGC Genomics GmbH) which provides sequencing and analysis services in the field conducted by the study. The manuscript doesn't promote or market any method of analysis in favor to their organization (all the Sanger and NGS methods tested are equally offered). There are no patents, products in development or marketed products to declare. This does not alter the authors’ adherence to all the PLOS ONE policies on sharing data and materials.

                Conceived and designed the experiments: JM BCA AL. Performed the experiments: JM BCA AL BF SA. Analyzed the data: JM BCA AL BF SA. Contributed reagents/materials/analysis tools: JM BCA. Wrote the paper: JM BCA AL BF SA AH LH SS MB DD GH.

                Author information
                http://orcid.org/0000-0002-7782-6041
                http://orcid.org/0000-0001-5751-8706
                http://orcid.org/0000-0002-0204-9196
                Article
                PONE-D-16-03052
                10.1371/journal.pone.0155497
                4871420
                27191722
                889ea279-d75e-4de1-b42f-6885bd07c517
                © 2016 Morinière et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 26 January 2016
                : 30 April 2016
                Page count
                Figures: 4, Tables: 4, Pages: 14
                Funding
                Funded by: funder-id http://dx.doi.org/10.13039/501100001659, Deutsche Forschungsgemeinschaft;
                Award ID: 01LI1501B
                Funded by: funder-id http://dx.doi.org/10.13039/501100005341, Bayerisches Staatsministerium für Wissenschaft, Forschung und Kunst;
                The project was supported by grants from the Bavarian State Government (BFB) and the German Federal Ministry of Education and Research (GBOL2:01LI1501B). LGC Genomics GmbH provided support in the form of salaries for authors BF and SA, but did not have any additional role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript. The specific roles of these authors are articulated in the 'author contributions' section.
                Categories
                Research Article
                Research and Analysis Methods
                Database and Informatics Methods
                Biological Databases
                Sequence Databases
                Biology and Life Sciences
                Molecular Biology
                Molecular Biology Techniques
                Sequencing Techniques
                Sequence Analysis
                Sequence Databases
                Research and Analysis Methods
                Molecular Biology Techniques
                Sequencing Techniques
                Sequence Analysis
                Sequence Databases
                Research and analysis methods
                Extraction techniques
                DNA extraction
                Biology and life sciences
                Molecular biology
                Molecular biology techniques
                DNA barcoding
                Research and analysis methods
                Molecular biology techniques
                DNA barcoding
                Biology and life sciences
                Evolutionary biology
                Evolutionary systematics
                Molecular systematics
                DNA barcoding
                Biology and life sciences
                Taxonomy
                Evolutionary systematics
                Molecular systematics
                DNA barcoding
                Computer and information sciences
                Data management
                Taxonomy
                Evolutionary systematics
                Molecular systematics
                DNA barcoding
                Biology and Life Sciences
                Ecology
                Biodiversity
                Ecology and Environmental Sciences
                Ecology
                Biodiversity
                Biology and Life Sciences
                Molecular Biology
                Molecular Biology Techniques
                Artificial Gene Amplification and Extension
                Polymerase Chain Reaction
                Research and Analysis Methods
                Molecular Biology Techniques
                Artificial Gene Amplification and Extension
                Polymerase Chain Reaction
                Biology and Life Sciences
                Organisms
                Animals
                Invertebrates
                Arthropoda
                Insects
                Hymenoptera
                Biology and Life Sciences
                Organisms
                Animals
                Invertebrates
                Arthropoda
                Insects
                Beetles
                Biology and Life Sciences
                Organisms
                Animals
                Invertebrates
                Arthropoda
                Insects
                Diptera
                Custom metadata
                All relevant data are within the paper and its Supporting Information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article