19
views
0
recommends
+1 Recommend
2 collections
    0
    shares

          The flagship journal of the Society for Endocrinology. Learn more

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The role of GPR1 signaling in mice corpus luteum

      research-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Chemerin, a chemokine, plays important roles in immune responses, inflammation, adipogenesis, and carbohydrate metabolism. Our recent research has shown that chemerin has an inhibitory effect on hormone secretion from the testis and ovary. However, whether G protein-coupled receptor 1 (GPR1), the active receptor for chemerin, regulates steroidogenesis and luteolysis in the corpus luteum is still unknown. In this study, we established a pregnant mare serum gonadotropin-human chorionic gonadotropin (PMSG-hCG) superovulation model, a prostaglandin F2α (PGF2α) luteolysis model, and follicle and corpus luteum culture models to analyze the role of chemerin signaling through GPR1 in the synthesis and secretion of gonadal hormones during follicular/luteal development and luteolysis. Our results, for the first time, show that chemerin and GPR1 are both differentially expressed in the ovary over the course of the estrous cycle, with highest levels in estrus and metestrus. GPR1 has been localized to granulosa cells, cumulus cells, and the corpus luteum by immunohistochemistry (IHC). In vitro, we found that chemerin suppresses hCG-induced progesterone production in cultured follicle and corpus luteum and that this effect is attenuated significantly by anti-GPR1 MAB treatment. Furthermore, when the phosphoinositide 3-kinase (PI3K) pathway was blocked, the attenuating effect of GPR1 MAB was abrogated. Interestingly, PGF2α induces luteolysis through activation of caspase-3, leading to a reduction in progesterone secretion. Treatment with GPR1 MAB blocked the PGF2α effect on caspase-3 expression and progesterone secretion. This study indicates that chemerin/GPR1 signaling directly or indirectly regulates progesterone synthesis and secretion during the processes of follicular development, corpus luteum formation, and PGF2α-induced luteolysis.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: not found

          Specific Recruitment of Antigen-presenting Cells by Chemerin, a Novel Processed Ligand from Human Inflammatory Fluids

          Dendritic cells (DCs) and macrophages are professional antigen-presenting cells (APCs) that play key roles in both innate and adaptive immunity. ChemR23 is an orphan G protein–coupled receptor related to chemokine receptors, which is expressed specifically in these cell types. Here we present the characterization of chemerin, a novel chemoattractant protein, which acts through ChemR23 and is abundant in a diverse set of human inflammatory fluids. Chemerin is secreted as a precursor of low biological activity, which upon proteolytic cleavage of its COOH-terminal domain, is converted into a potent and highly specific agonist of ChemR23, the chemerin receptor. Activation of chemerin receptor results in intracellular calcium release, inhibition of cAMP accumulation, and phosphorylation of p42–p44 MAP kinases, through the Gi class of heterotrimeric G proteins. Chemerin is structurally and evolutionary related to the cathelicidin precursors (antibacterial peptides), cystatins (cysteine protease inhibitors), and kininogens. Chemerin was shown to promote calcium mobilization and chemotaxis of immature DCs and macrophages in a ChemR23-dependent manner. Therefore, chemerin appears as a potent chemoattractant protein of a novel class, which requires proteolytic activation and is specific for APCs.
            • Record: found
            • Abstract: found
            • Article: not found

            Chemerin, a novel adipokine that regulates adipogenesis and adipocyte metabolism.

            Obesity is an alarming primary health problem and is an independent risk factor for type II diabetes, cardiovascular diseases, and hypertension. Although the pathologic mechanisms linking obesity with these co-morbidities are most likely multifactorial, increasing evidence indicates that altered secretion of adipose-derived signaling molecules (adipokines; e.g. adiponectin, leptin, and tumor necrosis factor alpha) and local inflammatory responses are contributing factors. Chemerin (RARRES2 or TIG2) is a recently discovered chemoattractant protein that serves as a ligand for the G protein-coupled receptor CMKLR1 (ChemR23 or DEZ) and has a role in adaptive and innate immunity. Here we show an unexpected, high level expression of chemerin and its cognate receptor CMKLR1 in mouse and human adipocytes. Cultured 3T3-L1 adipocytes secrete chemerin protein, which triggers CMKLR1 signaling in adipocytes and other cell types and stimulates chemotaxis of CMKLR1-expressing cells. Adenoviral small hairpin RNA targeted knockdown of chemerin or CMKLR1 expression impairs differentiation of 3T3-L1 cells into adipocytes, reduces the expression of adipocyte genes involved in glucose and lipid homeostasis, and alters metabolic functions in mature adipocytes. We conclude that chemerin is a novel adipose-derived signaling molecule that regulates adipogenesis and adipocyte metabolism.
              • Record: found
              • Abstract: found
              • Article: not found

              Strategies and methods for research on sex differences in brain and behavior.

              Female and male brains differ. Differences begin early during development due to a combination of genetic and hormonal events and continue throughout the lifespan of an individual. Although researchers from a myriad of disciplines are beginning to appreciate the importance of considering sex differences in the design and interpretation of their studies, this is an area that is full of potential pitfalls. A female's reproductive status and ovarian cycle have to be taken into account when studying sex differences in health and disease susceptibility, in the pharmacological effects of drugs, and in the study of brain and behavior. To investigate sex differences in brain and behavior there is a logical series of questions that should be answered in a comprehensive investigation of any trait. First, it is important to determine that there is a sex difference in the trait in intact males and females, taking into consideration the reproductive cycle of the female. Then, one must consider whether the sex difference is attributable to the actions of gonadal steroids at the time of testing and/or is sexually differentiated permanently by the action of gonadal steroids during development. To answer these questions requires knowledge of how to assess and/or manipulate the hormonal condition of the subjects in the experiment appropriately. This article describes methods and procedures to assist scientists new to the field in designing and conducting experiments to investigate sex differences in research involving both laboratory animals and humans.

                Author and article information

                Journal
                J Endocrinol
                J. Endocrinol
                JOE
                The Journal of Endocrinology
                Bioscientifica Ltd (Bristol )
                0022-0795
                1479-6805
                July 2016
                01 July 2016
                : 230
                : 1
                : 55-65
                Affiliations
                [1 ]Research Laboratory for Reproductive Health Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
                [2 ]Shenzhen Key Laboratory of Birth Defects Shenzhen Baoan Maternal and Child Health Hospital, Shenzhen, Guangdong, China
                [3 ]University of Chinese Academy of Sciences Shenzhen, China
                [4 ]Laboratory of Immunology and Vascular Biology Department of Pathology, Stanford University School of Medicine, Stanford, California, USA, and Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, California, USA
                Author notes
                Correspondence should be addressed to Peigen Ren or Jian V Zhang; Email: peigen.ren@ 123456siat.ac.cn or jian.zhang@ 123456siat.ac.cn
                [*]

                (Ya-Li Yang, Li-Rong Ren and Li-Feng Sun contributed equally to this work)

                Article
                JOE150521
                10.1530/JOE-15-0521
                5064765
                27149986
                88a9ec7f-8b09-4935-8f93-5d3da836798c
                © 2016 Society for Endocrinology

                This work is licensed under a Creative Commons Attribution 3.0 Unported License

                History
                : 1 April 2016
                : 4 May 2016
                Categories
                Research

                Endocrinology & Diabetes
                chemerin,gpr1,corpus luteum,progesterone
                Endocrinology & Diabetes
                chemerin, gpr1, corpus luteum, progesterone

                Comments

                Comment on this article

                Related Documents Log