16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Progress in understanding molecular mechanisms and evolution of resistance to succinate dehydrogenase inhibiting (SDHI) fungicides in phytopathogenic fungi

      ,
      Crop Protection
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: found

          Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma.

          Hereditary paraganglioma (PGL) is characterized by the development of benign, vascularized tumors in the head and neck. The most common tumor site is the carotid body (CB), a chemoreceptive organ that senses oxygen levels in the blood. Analysis of families carrying the PGL1 gene, described here, revealed germ line mutations in the SDHD gene on chromosome 11q23. SDHD encodes a mitochondrial respiratory chain protein-the small subunit of cytochrome b in succinate-ubiquinone oxidoreductase (cybS). In contrast to expectations based on the inheritance pattern of PGL, the SDHD gene showed no evidence of imprinting. These findings indicate that mitochondria play an important role in the pathogenesis of certain tumors and that cybS plays a role in normal CB physiology.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Architecture of succinate dehydrogenase and reactive oxygen species generation.

            The structure of Escherichia coli succinate dehydrogenase (SQR), analogous to the mitochondrial respiratory complex II, has been determined, revealing the electron transport pathway from the electron donor, succinate, to the terminal electron acceptor, ubiquinone. It was found that the SQR redox centers are arranged in a manner that aids the prevention of reactive oxygen species (ROS) formation at the flavin adenine dinucleotide. This is likely to be the main reason SQR is expressed during aerobic respiration rather than the related enzyme fumarate reductase, which produces high levels of ROS. Furthermore, symptoms of genetic disorders associated with mitochondrial SQR mutations may be a result of ROS formation resulting from impaired electron transport in the enzyme.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Crystal structure of mitochondrial respiratory membrane protein complex II.

              The mitochondrial respiratory Complex II or succinate:ubiquinone oxidoreductase (SQR) is an integral membrane protein complex in both the tricarboxylic acid cycle and aerobic respiration. Here we report the first crystal structure of Complex II from porcine heart at 2.4 A resolution and its complex structure with inhibitors 3-nitropropionate and 2-thenoyltrifluoroacetone (TTFA) at 3.5 A resolution. Complex II is comprised of two hydrophilic proteins, flavoprotein (Fp) and iron-sulfur protein (Ip), and two transmembrane proteins (CybL and CybS), as well as prosthetic groups required for electron transfer from succinate to ubiquinone. The structure correlates the protein environments around prosthetic groups with their unique midpoint redox potentials. Two ubiquinone binding sites are discussed and elucidated by TTFA binding. The Complex II structure provides a bona fide model for study of the mitochondrial respiratory system and human mitochondrial diseases related to mutations in this complex.
                Bookmark

                Author and article information

                Journal
                Crop Protection
                Crop Protection
                Elsevier BV
                02612194
                July 2010
                July 2010
                : 29
                : 7
                : 643-651
                Article
                10.1016/j.cropro.2010.02.019
                88af1d42-b9b3-479a-b463-ad1922d7448a
                © 2010

                http://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article