Blog
About

6
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Sonidegib: mechanism of action, pharmacology, and clinical utility for advanced basal cell carcinomas

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The Hedgehog (Hh) pathway is critical for cell differentiation, tissue polarity, and stem cell maintenance during embryonic development, but is silent in adult tissues under normal conditions. However, aberrant Hh signaling activation has been implicated in the development and promotion of certain types of cancer, including basal cell carcinoma (BCC), medulloblastoma, and gastrointestinal cancers. In 2015, the US Food and Drug Administration (FDA) approved sonidegib, a smoothened (SMO) antagonist, for treatment of advanced BCC (aBCC) after a successful Phase II clinical trial. Sonidegib, also named Odomzo, is the second Hh signaling inhibitor approved by the FDA to treat BCCs following approval of the first SMO antagonist vismodegib in 2012. What are the major features of sonidegib (mechanism of action; metabolic profiles, clinical efficacy, safety, and tolerability profiles)? Will the sonidegib experience help other clinical trials using Hh signaling inhibitors in the future? In this review, we will summarize current understanding of BCCs and Hh signaling. We will focus on sonidegib and its use in the clinic, and we will discuss ways to improve its clinical application in cancer therapeutics.

          Related collections

          Most cited references 59

          • Record: found
          • Abstract: found
          • Article: not found

          Patched1 regulates hedgehog signaling at the primary cilium.

          Primary cilia are essential for transduction of the Hedgehog (Hh) signal in mammals. We investigated the role of primary cilia in regulation of Patched1 (Ptc1), the receptor for Sonic Hedgehog (Shh). Ptc1 localized to cilia and inhibited Smoothened (Smo) by preventing its accumulation within cilia. When Shh bound to Ptc1, Ptc1 left the cilia, leading to accumulation of Smo and activation of signaling. Thus, primary cilia sense Shh and transduce signals that play critical roles in development, carcinogenesis, and stem cell function.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Vertebrate Smoothened functions at the primary cilium.

            The unanticipated involvement of several intraflagellar transport proteins in the mammalian Hedgehog (Hh) pathway has hinted at a functional connection between cilia and Hh signal transduction. Here we show that mammalian Smoothened (Smo), a seven-transmembrane protein essential for Hh signalling, is expressed on the primary cilium. This ciliary expression is regulated by Hh pathway activity; Sonic hedgehog or activating mutations in Smo promote ciliary localization, whereas the Smo antagonist cyclopamine inhibits ciliary localization. The translocation of Smo to primary cilia depends upon a conserved hydrophobic and basic residue sequence homologous to a domain previously shown to be required for the ciliary localization of seven-transmembrane proteins in Caenorhabditis elegans. Mutation of this domain not only prevents ciliary localization but also eliminates Smo activity both in cultured cells and in zebrafish embryos. Thus, Hh-dependent translocation to cilia is essential for Smo activity, suggesting that Smo acts at the primary cilium.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mutations affecting segment number and polarity in Drosophila.

              In systematic searches for embryonic lethal mutants of Drosophila melanogaster we have identified 15 loci which when mutated alter the segmental pattern of the larva. These loci probably represent the majority of such genes in Drosophila. The phenotypes of the mutant embryos indicate that the process of segmentation involves at least three levels of spatial organization: the entire egg as developmental unit, a repeat unit with the length of two segments, and the individual segment.
                Bookmark

                Author and article information

                Journal
                Onco Targets Ther
                Onco Targets Ther
                OncoTargets and Therapy
                OncoTargets and therapy
                Dove Medical Press
                1178-6930
                2017
                16 March 2017
                : 10
                : 1645-1653
                Affiliations
                [1 ]Indiana University School of Medicine
                [2 ]Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indianapolis, IN, USA
                Author notes
                Correspondence: Jingwu Xie, Department of Pediatrics, Herman B Wells Center for Pediatric Research, 1044 W. Walnut St., Rm 327, Indianapolis, IN 46202, USA, Email via jinxie@ 123456iu.edu
                ott-10-1645
                10.2147/OTT.S130910
                5360396
                © 2017 Jain et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                Categories
                Review

                Oncology & Radiotherapy

                sonidegib, basal cell carcinoma, cancer, inhibitor, smoothened, hedgehog

                Comments

                Comment on this article