106
views
0
recommends
+1 Recommend
2 collections
    1
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Viral Metagenomics on Blood-Feeding Arthropods as a Tool for Human Disease Surveillance

      review-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Surveillance and monitoring of viral pathogens circulating in humans and wildlife, together with the identification of emerging infectious diseases (EIDs), are critical for the prediction of future disease outbreaks and epidemics at an early stage. It is advisable to sample a broad range of vertebrates and invertebrates at different temporospatial levels on a regular basis to detect possible candidate viruses at their natural source. However, virus surveillance systems can be expensive, costly in terms of finances and resources and inadequate for sampling sufficient numbers of different host species over space and time. Recent publications have presented the concept of a new virus surveillance system, coining the terms “flying biological syringes”, “xenosurveillance” and “vector-enabled metagenomics”. According to these novel and promising surveillance approaches, viral metagenomics on engorged mosquitoes might reflect the viral diversity of numerous mammals, birds and humans, combined in the mosquitoes’ blood meal during feeding on the host. In this review article, we summarize the literature on vector-enabled metagenomics (VEM) techniques and its application in disease surveillance in humans. Furthermore, we highlight the combination of VEM and “invertebrate-derived DNA” (iDNA) analysis to identify the host DNA within the mosquito midgut.

          Related collections

          Most cited references111

          • Record: found
          • Abstract: found
          • Article: not found

          Evolution of mosquito preference for humans linked to an odorant receptor

          Female mosquitoes are major vectors of human disease and the most dangerous are those that preferentially bite humans. A ‘domestic’ form of the mosquito Aedes aegypti has evolved to specialize in biting humans and is the major worldwide vector of dengue, yellow fever, and Chikungunya viruses. The domestic form coexists with an ancestral, animal-biting ‘forest’ form along the coast of Kenya. We collected the two forms, established laboratory colonies, and document striking divergence in preference for human versus animal odour. We further show that the evolution of preference for human odour in domestic mosquitoes is tightly linked to increases in the expression and ligand-sensitivity of the odorant receptor AaegOr4, which we found recognises a compound present at high levels in human odour. Our results provide a rare example of a gene contributing to behavioural evolution and provide insight into how disease-vectoring mosquitoes came to specialise on humans.
            • Record: found
            • Abstract: found
            • Article: not found

            Human papillomavirus and cervical cancer.

            Of the many types of human papillomavirus (HPV), more than 30 infect the genital tract. The association between certain oncogenic (high-risk) strains of HPV and cervical cancer is well established. Although HPV is essential to the transformation of cervical epithelial cells, it is not sufficient, and a variety of cofactors and molecular events influence whether cervical cancer will develop. Early detection and treatment of precancerous lesions can prevent progression to cervical cancer. Identification of precancerous lesions has been primarily by cytologic screening of cervical cells. Cellular abnormalities, however, may be missed or may not be sufficiently distinct, and a portion of patients with borderline or mildly dyskaryotic cytomorphology will have higher-grade disease identified by subsequent colposcopy and biopsy. Sensitive and specific molecular techniques that detect HPV DNA and distinguish high-risk HPV types from low-risk HPV types have been introduced as an adjunct to cytology. Earlier detection of high-risk HPV types may improve triage, treatment, and follow-up in infected patients. Currently, the clearest role for HPV DNA testing is to improve diagnostic accuracy and limit unnecessary colposcopy in patients with borderline or mildly abnormal cytologic test results.
              • Record: found
              • Abstract: found
              • Article: not found

              A global index representing the stability of malaria transmission.

              To relate stability of malaria transmission to biologic characteristics of vector mosquitoes throughout the world, we derived an index representing the contribution of regionally dominant vector mosquitoes to the force of transmission. This construct incorporated published estimates describing the proportion of blood meals taken from human hosts, daily survival of the vector, and duration of the transmission season and of extrinsic incubation. The result of the calculation was displayed globally on a 0.5 degrees grid. We found that these biologic characteristics of diverse vector mosquitoes interact with climate to explain much of the regional variation in the intensity of transmission. Due to the superior capacity of many tropical mosquitoes as vectors of malaria, particularly those in sub-Saharan Africa, antimalaria interventions conducted in the tropics face greater challenges than were faced by formerly endemic nations in more temperate climes.

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                19 October 2016
                October 2016
                : 17
                : 10
                : 1743
                Affiliations
                Robert Koch Institute, Centre for Biological Threats and Special Pathogens, Seestrasse 10, Berlin 13353, Germany; NitscheA@ 123456rki.de (A.N.); KohlC@ 123456rki.de (C.K.)
                Author notes
                [* ]Correspondence: BrinkmannA@ 123456rki.de ; Tel.: +49-30-18754-2591
                Article
                ijms-17-01743
                10.3390/ijms17101743
                5085771
                27775568
                88b994a5-7dc4-4398-bfd7-0b858e368d26
                © 2016 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 06 July 2016
                : 11 October 2016
                Categories
                Review

                Molecular biology
                viral metagenomics,hematophagous arthropods,blood-feeding arthropods,vector-enabled metagenomics,xenosurveillance,emerging infectious diseases,virus surveillance,mosquitoes

                Comments

                Comment on this article

                Related Documents Log