6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Comparative analysis of the nucleosomal structure of rye, wheat and their relatives.

      1 ,
      Plant molecular biology
      Springer Science and Business Media LLC

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Analysis of the structure of chromatin in cereal species using micrococcal nuclease (MNase) cleavage showed nucleosomal organization and a ladder with typical nucleosomal spacing of 175-185 bp. Probing with a set of DNA probes localized in the authentic telomeres, subtelomeric regions and bulk chromatin revealed that these chromosomal regions have nucleosomal organization but differ in size of nucleosomes and rate of cleavage between both species and regions. Chromatin from Secale and Dasypyrum cleaved more quickly than that from wheat and barley, perhaps because of their higher content of repetitive sequences with hairpin structures accessible to MNase cleavage. In all species, the telomeric chromatin showed more rapid cleavage kinetics and a shorter nucleosome length (160 bp spacing) than bulk chromatin. Rye telomeric repeat arrays were shortest, ranging from 8 kb to 50 kb while those of wheat ranged from 15 kb up to 175 kb. A gradient of sensitivity to MNase was detected along rye chromosomes. The rye-specific subtelomeric sequences pSc200 and pSc250 have nucleosomes of two lengths, those of the telomeric and of bulk nucleosomes, indicating that the telomeric structure may extended into the chromosomes. More proximal sequences common to rye and wheat, the short tandem-repeat pSc119.2 and rDNA sequence pTa71, showed longer nucleosomal sizes characteristic of bulk chromatin in both species. A strictly defined spacing arrangement (phasing) of nucleosomes was demonstrated along arrays of tandem repeats with different monomer lengths (118, 350 and 550 bp) by combining MNase and restriction enzyme digestion.

          Related collections

          Author and article information

          Journal
          Plant Mol Biol
          Plant molecular biology
          Springer Science and Business Media LLC
          0167-4412
          0167-4412
          Jan 1998
          : 36
          : 1
          Affiliations
          [1 ] Department of Cell Biology, John Innes Centre, Norwich, UK.
          Article
          10.1023/a:1005912822671
          9484470
          88d9507c-6b66-4d5f-8e9b-97ffa51593c4
          History

          Comments

          Comment on this article