10
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Diagnosis and Management of Hyperinsulinaemic Hypoglycaemia of Infancy

      review-article

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hyperinsulinaemic hypoglycaemia is a cause of persistent hypoglycaemia in the neonatal and infancy periods. Prompt recognition and management of patients with hyperinsulinaemic hypoglycaemia are essential, if brain damage and long-term neurological sequelae are to be avoided. Hyperinsulinaemic hypoglycaemia can be transient, prolonged, or persistent (congenital). Advances in the fields of molecular biology, genetics, and pancreatic β-cell physiology are beginning to provide novel insights into the mechanisms causing congenital forms of hyperinsulinism. So far mutations in six different genes have been described that lead to unregulated insulin secretion. The histological differentiation of focal and diffuse congenital hyperinsulinism has radically changed the surgical approach to this disease. Until recently, highly invasive investigations were performed to localize the focal lesion, but recent experience with <sup>18</sup>F- L-dopa positron emission tomography scanning suggests that this technique is highly sensitive for differentiating diffuse from focal disease as well as for accurately locating the focal lesion. Despite recent advances, the genetic basis of congenital hyperinsulinism is still unknown in about 50% of the patients, and the management of medically unresponsive diffuse disease remains a real challenge.

          Related collections

          Most cited references63

          • Record: found
          • Abstract: found
          • Article: not found

          Mutations in the sulfonylurea receptor gene in familial persistent hyperinsulinemic hypoglycemia of infancy.

          Familial persistent hyperinsulinemic hypoglycemia of infancy (PHHI), an autosomal recessive disorder characterized by unregulated insulin secretion, is linked to chromosome 11p14-15.1. The newly cloned high-affinity sulfonylurea receptor (SUR) gene, a regulator of insulin secretion, was mapped to 11p15.1 by means of fluorescence in situ hybridization. Two separate SUR gene splice site mutations, which segregated with disease phenotype, were identified in affected individuals from nine different families. Both mutations resulted in aberrant processing of the RNA sequence and disruption of the putative second nucleotide binding domain of the SUR protein. Abnormal insulin secretion in PHHI appears to be caused by mutations in the SUR gene.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Hyperinsulinism and hyperammonemia in infants with regulatory mutations of the glutamate dehydrogenase gene.

            A new form of congenital hyperinsulinism characterized by hypoglycemia and hyperammonemia was described recently. We hypothesized that this syndrome of hyperinsulinism and hyperammonemia was caused by excessive activity of glutamate dehydrogenase, which oxidizes glutamate to alpha-ketoglutarate and which is a potential regulator of insulin secretion in pancreatic beta cells and of ureagenesis in the liver. We measured glutamate dehydrogenase activity in lymphoblasts from eight unrelated children with the hyperinsulinism-hyperammonemia syndrome: six with sporadic cases and two with familial cases. We identified mutations in the glutamate dehydrogenase gene by sequencing glutamate dehydrogenase complementary DNA prepared from lymphoblast messenger RNA. Site-directed mutagenesis was used to express the mutations in COS-7 cells. The sensitivity of glutamate dehydrogenase to inhibition by guanosine 5'-triphosphate was a quarter of the normal level in the patients with sporadic hyperinsulinism-hyperammonemia syndrome and half the normal level in patients with familial cases and their affected relatives, findings consistent with overactivity of the enzyme. These differences in enzyme insensitivity correlated with differences in the severity of hypoglycemia in the two groups. All eight children were heterozygous for the wild-type allele and had a mutation in the proposed allosteric domain of the enzyme. Four different mutations were identified in the six patients with sporadic cases; the two patients with familial cases shared a fifth mutation. In two clones of COS-7 cells transfected with the mutant sequence from one patient, the sensitivity of the enzyme to guanosine 5'-triphosphate was reduced, findings similar to those in the child's lymphoblasts. The hyperinsulinism-hyperammonemia syndrome is caused by mutations in the glutamate dehydrogenase gene that impair the control of enzyme activity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Beta-cell proliferation and apoptosis in the developing normal human pancreas and in hyperinsulinism of infancy.

              Hyperinsulinism of infancy (HI), also known as persistent hyperinsulinemic hypoglycemia of infancy, is a rare genetic disorder that occurs in approximately 1 of 50,000 live births. Histologically, pancreases from HI patients can be divided into 2 major groups. In the first, diffuse HI, beta-cell distribution is similar to that seen in normal neonatal pancreas, whereas in the second, focal HI, there is a discrete region of beta-cell adenomatous hyperplasia. In most patients, the clinical course of the disease suggests a slow progressive loss of beta-cell function. Using double immunostaining, we examined the proportion of beta-cells undergoing proliferation and apoptosis during the development of the normal human pancreas and in pancreases from diffuse and focal HI patients. In the control samples, our findings show a progressive decrease in beta-cell proliferation from 3.2 +/- 0.5% between 17 and 32 weeks of gestation to 0.13 +/- 0.08% after 6 months of age. In contrast, frequency of apoptosis is low (0.6 +/- 0.2%) in weeks 17-32 of gestation, elevated (1.3 +/- 0.3% ) during the perinatal period, and again low (0.08 +/- 0.3%) after 6 months of age. HI beta-cells showed an increased frequency of proliferation, with focal lesions showing particularly high levels. Similarly, the proportion of apoptotic cells was increased in HI, although this reached statistical significance only after 3 months of age. In conclusion, we demonstrated that islet remodeling normally seen in the neonatal period may be primarily due to a wave of beta-cell apoptosis that occurs at that time. In HI, our findings of persistently increased beta-cell proliferation and apoptosis provide a possible mechanism to explain the histologic picture seen in diffuse disease. The slow progressive decrease in insulin secretion seen clinically in these patients suggests that the net effect of these phenomena may be loss of beta-cell mass.
                Bookmark

                Author and article information

                Journal
                HRE
                Horm Res Paediatr
                10.1159/issn.1663-2818
                Hormone Research in Paediatrics
                S. Karger AG
                1663-2818
                1663-2826
                2008
                December 2007
                04 December 2007
                : 69
                : 1
                : 2-13
                Affiliations
                London Centre for Paediatric Endocrinology and Metabolism, Great Ormond Street Hospital for Children NHS Trust, London, and Institute of Child Health, University College London, London, UK
                Article
                111789 Horm Res 2008;69:2–13
                10.1159/000111789
                18059080
                88e92dee-49ff-4496-b216-17b6a4c12eb2
                © 2007 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                : 07 September 2006
                : 27 July 2007
                Page count
                Figures: 5, Tables: 2, References: 76, Pages: 12
                Categories
                Mini Review

                Endocrinology & Diabetes,Neurology,Nutrition & Dietetics,Sexual medicine,Internal medicine,Pharmacology & Pharmaceutical medicine
                Genetic causes, hyperinsulinaemic hypoglycaemia,Congenital hyperinsulinism,Childhood hyperinsulinaemic hypoglycaemia,KATP channels, glucose metabolism

                Comments

                Comment on this article