5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Novel MOF-Derived Co@N-C Bifunctional Catalysts for Highly Efficient Zn-Air Batteries and Water Splitting

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles.

          The efficiency of many energy storage technologies, such as rechargeable metal-air batteries and hydrogen production from water splitting, is limited by the slow kinetics of the oxygen evolution reaction (OER). We found that Ba(0.5)Sr(0.5)Co(0.8)Fe(0.2)O(3-δ) (BSCF) catalyzes the OER with intrinsic activity that is at least an order of magnitude higher than that of the state-of-the-art iridium oxide catalyst in alkaline media. The high activity of BSCF was predicted from a design principle established by systematic examination of more than 10 transition metal oxides, which showed that the intrinsic OER activity exhibits a volcano-shaped dependence on the occupancy of the 3d electron with an e(g) symmetry of surface transition metal cations in an oxide. The peak OER activity was predicted to be at an e(g) occupancy close to unity, with high covalency of transition metal-oxygen bonds.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt.

            The prohibitive cost of platinum for catalyzing the cathodic oxygen reduction reaction (ORR) has hampered the widespread use of polymer electrolyte fuel cells. We describe a family of non-precious metal catalysts that approach the performance of platinum-based systems at a cost sustainable for high-power fuel cell applications, possibly including automotive power. The approach uses polyaniline as a precursor to a carbon-nitrogen template for high-temperature synthesis of catalysts incorporating iron and cobalt. The most active materials in the group catalyze the ORR at potentials within ~60 millivolts of that delivered by state-of-the-art carbon-supported platinum, combining their high activity with remarkable performance stability for non-precious metal catalysts (700 hours at a fuel cell voltage of 0.4 volts) as well as excellent four-electron selectivity (hydrogen peroxide yield <1.0%).
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts.

              Although sunlight-driven water splitting is a promising route to sustainable hydrogen fuel production, widespread implementation is hampered by the expense of the necessary photovoltaic and photoelectrochemical apparatus. Here, we describe a highly efficient and low-cost water-splitting cell combining a state-of-the-art solution-processed perovskite tandem solar cell and a bifunctional Earth-abundant catalyst. The catalyst electrode, a NiFe layered double hydroxide, exhibits high activity toward both the oxygen and hydrogen evolution reactions in alkaline electrolyte. The combination of the two yields a water-splitting photocurrent density of around 10 milliamperes per square centimeter, corresponding to a solar-to-hydrogen efficiency of 12.3%. Currently, the perovskite instability limits the cell lifetime.
                Bookmark

                Author and article information

                Journal
                Advanced Materials
                Adv. Mater.
                Wiley
                09359648
                March 2018
                March 2018
                January 19 2018
                : 30
                : 10
                : 1705431
                Affiliations
                [1 ]Department of Chemistry; School of Environmental Science and Engineering; Nanjing University of Information Science & Technology; Nanjing 210044 P. R. China
                [2 ]Center of Advanced Science and Engineering for Carbon (Case4carbon); Department of Macromolecular Science and Engineering; Case Western Reserve University; 10900 Euclid Avenue Cleveland OH 44106 USA
                [3 ]State Key Laboratory of Coordination Chemistry; School of Chemistry and Chemical Engineering; Nanjing University; Nanjing 210023 P. R. China
                [4 ]UNSW-CWRU International Joint Laboratory; School of Chemical Engineering; University of New South Wales; Sydney 2052 Australia
                Article
                10.1002/adma.201705431
                88ea044a-c040-44bc-a75d-864e389290ba
                © 2018

                http://doi.wiley.com/10.1002/tdm_license_1.1

                http://onlinelibrary.wiley.com/termsAndConditions#vor

                History

                Comments

                Comment on this article