11
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Evidence for an interaction between CB1 cannabinoid and melanocortin MCR-4 receptors in regulating food intake.

      Endocrinology
      Animals, Drug Interactions, Eating, physiology, Male, Peptides, Cyclic, pharmacology, Piperidines, Pyrazoles, Rats, Rats, Wistar, Receptor, Cannabinoid, CB1, antagonists & inhibitors, metabolism, Receptor, Melanocortin, Type 4, agonists, alpha-MSH, beta-MSH, analogs & derivatives

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Melanocortin receptor 4 (MCR4) and CB(1) cannabinoid receptors independently modulate food intake. Although an interaction between the cannabinoid and melanocortin systems has been found in recovery from hemorrhagic shock, the interaction between these systems in modulating food intake has not yet been examined. The present study had two primary purposes: 1) to examine whether the cannabinoid and melanocortin systems act independently or synergistically in suppressing food intake; and 2) to determine the relative position of the CB(1) receptors in the chain of control of food intake in relation to the melanocortin system. Rats were habituated to the test environment and injection procedure and then received intracerebroventicular injections of various combinations of the MCR4 receptor antagonist JKC-363, the CB(1) receptor agonist Delta(9)-tetrahydrocannabinol, the MCR4 receptor agonist alpha-MSH, or the cannabinoid CB(1) receptor antagonist SR 141716. Food intake and locomotor activity were then recorded for 120 min. When administrated alone, SR 141716 and alpha-MSH dose-dependently attenuated baseline feeding, whereas sub-anorectic doses of SR 141716 and alpha-MSH synergistically attenuated baseline feeding when combined. Delta(9)-Tetrahydrocannabinol-induced feeding was not blocked by alpha-MSH, whereas SR 141716 dose-dependently attenuated JKC-363-induced feeding. Locomotor activity was not significantly affected by any drug treatment, suggesting that the observed effects on feeding were not due to a nonspecific reduction in motivated behavior. These findings revealed a synergistic interaction between the cannabinoid and melanocortin systems in feeding behavior. These results further suggested that CB(1) receptors are located downstream from melanocortin receptors and CB(1) receptor signaling is necessary to prevent the melanocortin system from altering food intake.

          Related collections

          Author and article information

          Comments

          Comment on this article