30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Semipermeable polymer vesicle (PICsome) self-assembled in aqueous medium from a pair of oppositely charged block copolymers: physiologically stable micro-/nanocontainers of water-soluble macromolecules.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A new entity of polymer vesicle with a polyion complex (PIC) membrane, a PICsome, was prepared by simple mixing of a pair of oppositely charged block copolymers, composed of biocompatible PEG and poly(amino acid)s, in an aqueous medium. Flow particle image analysis revealed the formation of spherical particles with a size range up to 10 mum. Observation by dark-field and confocal laser scanning microscopes clearly confirmed that the PICsome has a hollow structure with an inner-water phase, in which FITC-dextran emitting green fluorescence was successfully encapsulated simply by the simultaneous mixing with the block copolymers. Confocal laser scanning microscopic observation and spectral analysis revealed the smooth penetration of a low molecular weight fluorescent dye (TRITC; MW = 443.5) emitting red fluorescence into the FITC-dextran encapsulated PICsome to give the PICsome image with a merged color of yellows, indicating the semipermeable nature of the PICsome membrane. The PICsomes showed appreciable physiological stability even in the presence of serum proteins, suggesting their feasibility in biomedical fields such as carriers of therapeutic compounds and compartments for diagnostic enzymes.

          Related collections

          Author and article information

          Journal
          J Am Chem Soc
          Journal of the American Chemical Society
          American Chemical Society (ACS)
          0002-7863
          0002-7863
          May 10 2006
          : 128
          : 18
          Affiliations
          [1 ] Department of Materials Engineering, Graduate School of Engineering, and Center for NanoBio Integration, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 Japan.
          Article
          10.1021/ja057993r
          16669639
          88fa774d-c3c3-4ba4-bb8e-7a07d9159b1d
          History

          Comments

          Comment on this article