Blog
About

10
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      α1-Antitrypsin reduces rhinovirus infection in primary human airway epithelial cells exposed to cigarette smoke

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Human rhinovirus (HRV) infections target airway epithelium and are the leading cause of acute exacerbations of COPD. Cigarette smoke (CS) increases the severity of viral infections, but there is no effective therapy for HRV infection. We determined whether α1-antitrypsin (A1AT) reduces HRV-16 infection in CS-exposed primary human airway epithelial cells. Brushed bronchial epithelial cells from normal subjects and patients diagnosed with COPD were cultured at air–liquid interface to induce mucociliary differentiation. These cells were treated with A1AT or bovine serum albumin for 2 hours and then exposed to air or whole cigarette smoke (WCS) with or without HRV-16 (5×10 4 50% Tissue Culture Infective Dose [TCID 50]/transwell) infection for 24 hours. WCS exposure significantly increased viral load by an average of fivefold and decreased the expression of antiviral genes interferon-λ1, OAS1, and MX1. When A1AT was added to WCS-exposed cells, viral load significantly decreased by an average of 29-fold. HRV-16 infection significantly increased HRV-16 receptor intercellular adhesion molecule-1 messenger RNA expression in air-exposed cells, which was decreased by A1AT. A1AT-mediated reduction of viral load was not accompanied by increased epithelial antiviral gene expression or by inhibiting the activity of 3C protease involved in viral replication or maturation. Our findings demonstrate that A1AT treatment prevents a WCS-induced increase in viral load and for the first time suggest a therapeutic effect of A1AT on HRV infection.

          Related collections

          Most cited references 38

          • Record: found
          • Abstract: found
          • Article: not found

          The ABCs of rhinoviruses, wheezing, and asthma.

           James Gern (2010)
          Human rhinoviruses (HRVs) were discovered as common cold pathogens over 50 years ago. Recent advances in molecular viral diagnostics have led to an appreciation of their role in more-significant respiratory illnesses, including bronchiolitis in infancy, childhood pneumonia, and acute exacerbations of chronic respiratory diseases such as asthma, chronic obstructive lung disease, and cystic fibrosis. Until a few years ago, only two groups of HRVs (A and B) had been recognized. However, full and partial sequencing of HRVs led to the discovery of a third species of HRV (HRV-C) that has distinct structural and biologic features. Risk factors and pathogenic mechanisms for more-severe HRV infections are being defined, and yet fundamental questions persist about mechanisms relating this common pathogen to allergic diseases and asthma. The close relationship between HRV infections and asthma suggests that antiviral treatments could have a major impact on the morbidity associated with this chronic respiratory disease.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Respiratory virus induction of alpha-, beta- and lambda-interferons in bronchial epithelial cells and peripheral blood mononuclear cells.

            Respiratory viruses, predominantly rhinoviruses are the major cause of asthma exacerbations. Impaired production of interferon-beta in rhinovirus infected bronchial epithelial cells (BECs) and of the newly discovered interferon-lambdas in both BECs and bronchoalveolar lavage cells, is implicated in asthma exacerbation pathogenesis. Thus replacement of deficient interferon is a candidate new therapy for asthma exacerbations. Rhinoviruses and other respiratory viruses infect both BECs and macrophages, but their relative capacities for alpha-, beta- and lambda-interferon production are unknown. To provide guidance regarding which interferon type is the best candidate for development for treatment/prevention of asthma exacerbations we investigated respiratory virus induction of alpha-, beta- and lambda-interferons in BECs and peripheral blood mononuclear cells (PBMCs) by reverse transferase-polymerase chain reaction and enzyme-linked immunosorbent assay. Rhinovirus infection of BEAS-2B BECs induced interferon-alpha mRNA expression transiently at 8 h and interferon-beta later at 24 h while induction of interferon-lambda was strongly induced at both time points. At 24 h, interferon-alpha protein was not detected, interferon-beta was weakly induced while interferon-lambda was strongly induced. Similar patterns of mRNA induction were observed in primary BECs, in response to both rhinovirus and influenza A virus infection, though protein levels were below assay detection limits. In PBMCs interferon-alpha, interferon-beta and interferon-lambda mRNAs were all strongly induced by rhinovirus at both 8 and 24 h and proteins were induced: interferon-alpha>-beta>-lambda. Thus respiratory viruses induced expression of alpha-, beta- and lambda-interferons in BECs and PBMCs. In PBMCs interferon-alpha>-beta>-lambda while in BECs, interferon-lambda>-beta>-alpha. We conclude that interferon-lambdas are likely the principal interferons produced during innate responses to respiratory viruses in BECs and interferon-alphas in PBMCs, while interferon-beta is produced by both cell types.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pathogenesis of rhinovirus infection.

              Since its discovery in 1956, rhinovirus (RV) has been recognized as the most important virus producing the common cold syndrome. Despite its ubiquity, little is known concerning the pathogenesis of RV infections, and some of the research in this area has led to contradictions regarding the molecular and cellular mechanisms of RV-induced illness. In this article, we discuss the pathogenesis of this virus as it relates to RV-induced illness in the upper and lower airway, an issue of considerable interest in view of the minimal cytopathology associated with RV infection. We endeavor to explain why many infected individuals exhibit minimal symptoms or remain asymptomatic, while others, especially those with asthma, may have severe, even life-threatening, complications (sequelae). Finally, we discuss the immune responses to RV in the normal and asthmatic host focusing on RV infection and epithelial barrier integrity and maintenance as well as the impact of the innate and adaptive immune responses to RV on epithelial function. Copyright © 2012 Elsevier B.V. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Int J Chron Obstruct Pulmon Dis
                Int J Chron Obstruct Pulmon Dis
                International Journal of COPD
                International Journal of Chronic Obstructive Pulmonary Disease
                Dove Medical Press
                1176-9106
                1178-2005
                2016
                10 June 2016
                : 11
                : 1279-1286
                Affiliations
                Department of Medicine, National Jewish Health, Denver, CO, USA
                Author notes
                Correspondence: Hong Wei Chu, Room A639, Department of Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO 80206, USA, Tel +1 303 398 1689, Fax +1 303 270 2319, Email chuhw@ 123456njhealth.org
                Article
                copd-11-1279
                10.2147/COPD.S105717
                4910614
                27354786
                © 2016 Berman et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                Categories
                Original Research

                Respiratory medicine

                icam-1, cigarette smoke, copd, rhinovirus, α1-antitrypsin

                Comments

                Comment on this article