39
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Risks and Benefits of Consumption of Great Lakes Fish

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: Beneficial effects of fish consumption on early cognitive development and cardiovascular health have been attributed to the omega-3 fatty acids in fish and fish oils, but toxic chemicals in fish may adversely affect these health outcomes. Risk–benefit assessments of fish consumption have frequently focused on methylmercury and omega-3 fatty acids, not persistent pollutants such as polychlorinated biphenyls, and none have evaluated Great Lakes fish consumption.

          Objectives: The risks and benefits of fish consumption have been established primarily for marine fish. Here, we examine whether sufficient data are available to evaluate the risks and benefits of eating freshwater fish from the Great Lakes.

          Methods: We used a scoping review to integrate information from multiple state, provincial, and federal agency sources regarding the contaminants and omega-3 fatty acids in Great Lakes fish and fish consumers, consumption rates and fish consumption advisories, and health effects of contaminants and omega-3 fatty acids.

          Data synthesis: Great Lakes fish contain persistent contaminants—many of which have documented adverse health effects —that accumulate in humans consuming them. In contrast, data are sparse on omega-3 fatty acids in the fish and their consumers. Moreover, few studies have documented the social and cultural benefits of Great Lakes fish consumption, particularly for subsistence fishers and native communities. At this time, federal and state/provincial governments provide fish consumption advisories based solely on risk.

          Conclusions: Our knowledge of Great Lakes fish has critical gaps, particularly regarding the benefits of consumption. A risk–benefit analysis requires more information than is currently available on the concentration of omega-3 fatty acids in Great Lakes fish and their absorption by fish eaters in addition to more information on the social, cultural, and health consequences of changes in the amount of fish consumed.

          Related collections

          Most cited references123

          • Record: found
          • Abstract: found
          • Article: not found

          Maternal seafood consumption in pregnancy and neurodevelopmental outcomes in childhood (ALSPAC study): an observational cohort study.

          Seafood is the predominant source of omega-3 fatty acids, which are essential for optimum neural development. However, in the USA, women are advised to limit their seafood intake during pregnancy to 340 g per week. We used the Avon Longitudinal Study of Parents and Children (ALSPAC) to assess the possible benefits and hazards to a child's development of different levels of maternal seafood intake during pregnancy. 11,875 pregnant women completed a food frequency questionnaire assessing seafood consumption at 32 weeks' gestation. Multivariable logistic regression models including 28 potential confounders assessing social disadvantage, perinatal, and dietary items were used to compare developmental, behavioural, and cognitive outcomes of the children from age 6 months to 8 years in women consuming none, some (1-340 g per week), and >340 g per week. After adjustment, maternal seafood intake during pregnancy of less than 340 g per week was associated with increased risk of their children being in the lowest quartile for verbal intelligence quotient (IQ) (no seafood consumption, odds ratio [OR] 1.48, 95% CI 1.16-1.90; some, 1.09, 0.92-1.29; overall trend, p=0.004), compared with mothers who consumed more than 340 g per week. Low maternal seafood intake was also associated with increased risk of suboptimum outcomes for prosocial behaviour, fine motor, communication, and social development scores. For each outcome measure, the lower the intake of seafood during pregnancy, the higher the risk of suboptimum developmental outcome. Maternal seafood consumption of less than 340 g per week in pregnancy did not protect children from adverse outcomes; rather, we recorded beneficial effects on child development with maternal seafood intakes of more than 340 g per week, suggesting that advice to limit seafood consumption could actually be detrimental. These results show that risks from the loss of nutrients were greater than the risks of harm from exposure to trace contaminants in 340 g seafood eaten weekly.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Fish and omega-3 fatty acid intake and risk of coronary heart disease in women.

            Frank Hu (2002)
            Higher consumption of fish and omega-3 fatty acids has been associated with a lower risk of coronary heart disease (CHD) in men, but limited data are available regarding women. To examine the association between fish and long-chain omega-3 fatty acid consumption and risk of CHD in women. Dietary consumption and follow-up data from 84 688 female nurses enrolled in the Nurses' Health Study, aged 34 to 59 years and free from cardiovascular disease and cancer at baseline in 1980, were compared from validated questionnaires completed in 1980, 1984, 1986, 1990, and 1994. Incident nonfatal myocardial infarction and CHD deaths. During 16 years of follow-up, there were 1513 incident cases of CHD (484 CHD deaths and 1029 nonfatal myocardial infarctions). Compared with women who rarely ate fish (<1 per month), those with a higher intake of fish had a lower risk of CHD. After adjustment for age, smoking, and other cardiovascular risk factors, the multivariable relative risks (RRs) of CHD were 0.79 (95% confidence interval [CI], 0.64-0.97) for fish consumption 1 to 3 times per month, 0.71 (95% CI, 0.58-0.87) for once per week, 0.69 (95% CI, 0.55-0.88) for 2 to 4 times per week, and 0.66 (95% CI, 0.50-0.89) for 5 or more times per week (P for trend =.001). Similarly, women with a higher intake of omega-3 fatty acids had a lower risk of CHD, with multivariable RRs of 1.0, 0.93, 0.78, 0.68, and 0.67 (P<.001 for trend) across quintiles of intake. For fish intake and omega-3 fatty acids, the inverse association appeared to be stronger for CHD deaths (multivariate RR for fish consumption 5 times per week, 0.55 [95% CI, 0.33-0.90] for CHD deaths vs 0.73 [0.51-1.04]) than for nonfatal myocardial infarction. Among women, higher consumption of fish and omega-3 fatty acids is associated with a lower risk of CHD, particularly CHD deaths.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Maternal Fish Consumption, Hair Mercury, and Infant Cognition in a U.S. Cohort

              Fish and other seafood may contain organic mercury but also beneficial nutrients such as n-3 polyunsaturated fatty acids. We endeavored to study whether maternal fish consumption during pregnancy harms or benefits fetal brain development. We examined associations of maternal fish intake during pregnancy and maternal hair mercury at delivery with infant cognition among 135 mother–infant pairs in Project Viva, a prospective U.S. pregnancy and child cohort study. We assessed infant cognition by the percent novelty preference on visual recognition memory (VRM) testing at 6 months of age. Mothers consumed an average of 1.2 fish servings per week during the second trimester. Mean maternal hair mercury was 0.55 ppm, with 10% of samples > 1.2 ppm. Mean VRM score was 59.8 (range, 10.9–92.5). After adjusting for participant characteristics using linear regression, higher fish intake was associated with higher infant cognition. This association strengthened after adjustment for hair mercury level: For each additional weekly fish serving, offspring VRM score was 4.0 points higher [95% confidence interval (CI), 1.3 to 6.7]. However, an increase of 1 ppm in mercury was associated with a decrement in VRM score of 7.5 (95% CI, –13.7 to –1.2) points. VRM scores were highest among infants of women who consumed > 2 weekly fish servings but had mercury levels ≤1.2 ppm. Higher fish consumption in pregnancy was associated with better infant cognition, but higher mercury levels were associated with lower cognition. Women should continue to eat fish during pregnancy but choose varieties with lower mercury contamination.
                Bookmark

                Author and article information

                Journal
                Environ Health Perspect
                EHP
                Environmental Health Perspectives
                National Institute of Environmental Health Sciences
                0091-6765
                1552-9924
                23 September 2011
                January 2012
                : 120
                : 1
                : 11-18
                Affiliations
                [1 ]Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois at Chicago, Chicago, Illinois, USA
                [2 ]Environmental Monitoring and Reporting Branch, Ontario Ministry of the Environment, Toronto, Ontario, Canada
                [3 ]Department of Environmental Science and Technology, University of Maryland, College Park, Maryland, USA
                [4 ]Great Lakes Branch, Ontario Ministry of Natural Resources, Peterborough, Ontario, Canada
                [5 ]Division of Environmental and Occupational Health Sciences, School of Public Health, University of Illinois at Chicago, Chicago, Illinois, USA
                [6 ]Department of Geography and Program in Planning and Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
                [7 ]Centre de Recherche Interdisciplinaire sur la Biologie, la Santé, la Société et l’Environnement (CINBIOSE), Université du Québec à Montreal, Québec, Canada
                [8 ]Food Laboratories Division, Health Canada, Ontario Region, Toronto, Ontario, Canada
                [9 ]Department of Veterinary Biosciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
                [10 ]Institute for Health and the Environment, University at Albany, Rensselaer, New York, USA
                Author notes
                Address correspondence to M. Turyk, University of Illinois at Chicago School of Public Health, 1603 W. Taylor St., Room 879 (M/C 923), Chicago, IL 60612 USA. Telephone: (312) 355-4673. Fax: (312) 996-0064. E-mail: mturyk1@ 123456uic.edu
                Article
                ehp.1003396
                10.1289/ehp.1003396
                3261933
                21947562
                89036952-fd21-4e5c-a806-635ddd83c59f
                Copyright @ 2011

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 29 December 2010
                : 23 September 2011
                Categories
                Review

                Public health
                pcbs,dioxin,risk assessment,fish consumption,methylmercury,omega-3 fatty acids,great lakes
                Public health
                pcbs, dioxin, risk assessment, fish consumption, methylmercury, omega-3 fatty acids, great lakes

                Comments

                Comment on this article