26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Environmental exposure to arsenic and chromium in an industrial area

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Arsenic and chromium are widespread environmental contaminants that affect global health due to their toxicity and carcinogenicity. To date, few studies have investigated exposure to arsenic and chromium in a population residing in a high-risk environmental area. The aim of this study is to evaluate the exposure to arsenic and chromium in the general population with no occupational exposure to these metals, resident in the industrial area of Taranto, Southern Italy, through biological monitoring techniques. We measured the levels of chromium, inorganic arsenic, and methylated metabolites, in the urine samples of 279 subjects residing in Taranto and neighboring areas. Qualified health staff administered a standardized structured questionnaire investigating lifestyle habits and controlling for confounding factors. The biological monitoring data showed high urinary concentrations of both the heavy metals investigated, particularly Cr. On this basis, it will be necessary to carry out an organized environmental monitoring program, taking into consideration all exposure routes so as to correlate the environmental concentrations of these metals with the biomonitoring results.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          Chromium in Drinking Water: Sources, Metabolism, and Cancer Risks

          Drinking water supplies in many geographic areas contain chromium in the +3 and +6 oxidation states. Public health concerns are centered on the presence of hexavalent Cr that is classified as a known human carcinogen via inhalation. Cr(VI) has high environmental mobility and can originate from anthropogenic and natural sources. Acidic environments with high organic content promote the reduction of Cr(VI) to nontoxic Cr(III). The opposite process of Cr(VI) formation from Cr(III) also occurs, particularly in the presence of common minerals containing Mn(IV) oxides. Limited epidemiological evidence for Cr(VI) ingestion is suggestive of elevated risks for stomach cancers. Exposure of animals to Cr(VI) in drinking water induced tumors in the alimentary tract, with linear and supralinear responses in the mouse small intestine. Chromate, the predominant form of Cr(VI) at neutral pH, is taken up by all cells through sulfate channels and is activated nonenzymatically by ubiquitously present ascorbate and small thiols. The most abundant form of DNA damage induced by Cr(VI) is Cr-DNA adducts, which cause mutations and chromosomal breaks. Emerging evidence points to two-way interactions between DNA damage and epigenetic changes that collectively determine the spectrum of genomic rearrangements and profiles of gene expression in tumors. Extensive formation of DNA adducts, clear positivity in genotoxicity assays with high predictive values for carcinogenicity, the shape of tumor–dose responses in mice, and a biological signature of mutagenic carcinogens (multispecies, multisite, and trans-sex tumorigenic potency) strongly support the importance of the DNA-reactive mutagenic mechanisms in carcinogenic effects of Cr(VI). Bioavailability results and kinetic considerations suggest that 10–20% of ingested low-dose Cr(VI) escapes human gastric inactivation. The directly mutagenic mode of action and the incompleteness of gastric detoxification argue against a threshold in low-dose extrapolation of cancer risk for ingested Cr(VI).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genetic and epigenetic mechanisms in metal carcinogenesis and cocarcinogenesis: nickel, arsenic, and chromium.

            Chronic exposure to nickel(II), chromium(VI), or inorganic arsenic (iAs) has long been known to increase cancer incidence among affected individuals. Recent epidemiological studies have found that carcinogenic risks associated with chromate and iAs exposures were substantially higher than previously thought, which led to major revisions of the federal standards regulating ambient and drinking water levels. Genotoxic effects of Cr(VI) and iAs are strongly influenced by their intracellular metabolism, which creates several reactive intermediates and byproducts. Toxic metals are capable of potent and surprisingly selective activation of stress-signaling pathways, which are known to contribute to the development of human cancers. Depending on the metal, ascorbate (vitamin C) has been found to act either as a strong enhancer or suppressor of toxic responses in human cells. In addition to genetic damage via both oxidative and nonoxidative (DNA adducts) mechanisms, metals can also cause significant changes in DNA methylation and histone modifications, leading to epigenetic silencing or reactivation of gene expression. In vitro genotoxicity experiments and recent animal carcinogenicity studies provided strong support for the idea that metals can act as cocarcinogens in combination with nonmetal carcinogens. Cocarcinogenic and comutagenic effects of metals are likely to stem from their ability to interfere with DNA repair processes. Overall, metal carcinogenesis appears to require the formation of specific metal complexes, chromosomal damage, and activation of signal transduction pathways promoting survival and expansion of genetically/epigenetically altered cells.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Public health. Arsenic epidemiology and drinking water standards.

                Bookmark

                Author and article information

                Contributors
                39 080 5478256 , luigi.vimercati@uniba.it
                maria.gatti@uniba.it
                tommaso.gagliardi@uniba.it
                francesco_cuccaro@hotmail.com
                luigi.demaria@uniba.it
                antonio.caputi@uniba.it
                marco.quarato91@gmail.com
                antonio.baldassarre@uniba.it
                Journal
                Environ Sci Pollut Res Int
                Environ Sci Pollut Res Int
                Environmental Science and Pollution Research International
                Springer Berlin Heidelberg (Berlin/Heidelberg )
                0944-1344
                1614-7499
                20 March 2017
                20 March 2017
                2017
                : 24
                : 12
                : 11528-11535
                Affiliations
                [1 ]GRID grid.7644.1, Interdisciplinary Department of Medicine, Occupational Medicine “B. Ramazzini”, , University of Bari Medical School, ; Giulio Cesare Square 11, 70124 Bari, Italy
                [2 ]Health Local Unit of Barletta-Andria-Trani, 76121 Barletta, Italy
                Author notes

                Responsible editor: Philippe Garrigues

                Author information
                http://orcid.org/0000-0002-4072-2871
                Article
                8827
                10.1007/s11356-017-8827-6
                5393286
                28321698
                891548ce-9088-435c-8fee-d26d6e6dbfc2
                © The Author(s) 2017

                Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

                History
                : 8 November 2016
                : 13 March 2017
                Categories
                Research Article
                Custom metadata
                © Springer-Verlag Berlin Heidelberg 2017

                General environmental science
                arsenic,chromium,carcinogens,environmental exposure,biological monitoring,public health

                Comments

                Comment on this article