14
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      International Journal of Nanomedicine (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on the application of nanotechnology in diagnostics, therapeutics, and drug delivery systems throughout the biomedical field. Sign up for email alerts here.

      105,621 Monthly downloads/views I 7.033 Impact Factor I 10.9 CiteScore I 1.22 Source Normalized Impact per Paper (SNIP) I 1.032 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Poly(lactic-co-glycolic acid) nanoparticles conjugated with CD133 aptamers for targeted salinomycin delivery to CD133 + osteosarcoma cancer stem cells

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Cancer stem cells (CSCs) possess the characteristics associated with normal stem cells and are responsible for cancer initiation, recurrence, and metastasis. CD133 is regarded as a CSCs marker of osteosarcoma, which is the most common primary bone malignancy in childhood and adolescence. Salinomycin, a polyether ionophore antibiotic, has been shown to kill various CSCs, including osteosarcoma CSCs. However, salinomycin displayed poor aqueous solubility that hinders its clinical application. The objective of this study was to develop salinomycin-loaded nanoparticles to eliminate CD133 + osteosarcoma CSCs.

          Methods

          The salinomycin-loaded PEGylated poly(lactic-co-glycolic acid) nanoparticles (SAL-NP) conjugated with CD133 aptamers (Ap-SAL-NP) were developed by an emulsion/solvent evaporation method, and the targeting and cytotoxicity of Ap-SAL-NP to CD133 + osteosarcoma CSCs were evaluated.

          Results

          The nanoparticles are of desired particle size (~150 nm), drug encapsulation efficiency (~50%), and drug release profile. After 48 hours treatment of the Saos-2 CD133 + osteosarcoma cells with drugs formulated in Ap-SAL-NP, SAL-NP, and salinomycin, the concentrations needed to kill 50% of the incubated cells were found to be 2.18, 10.72, and 5.07 μg/mL, respectively, suggesting that Ap-SAL-NP could be 4.92 or 2.33 fold more effective than SAL-NP or salinomycin, respectively. In contrast, Ap-SAL-NP was as effective as SAL-NP, and less effective than salinomycin in Saos-2 CD133 cells, suggesting that Ap-SAL-NP possess specific cytotoxicity toward Saos-2 CD133 + cells. Ap-SAL-NP showed the best therapeutic effect in Saos-2 osteosarcoma xenograft mice, compared with SAL-NP or salinomycin. Significantly, Ap-SAL-NP could selectively kill CD133 + osteosarcoma CSCs both in vitro and in vivo, as reflected by the tumorsphere formation and proportion of Saos-2 CD133 + cells.

          Conclusion

          Our results suggest that CD133 is a potential target for drug delivery to osteosarcoma CSCs and that it is possible to significantly inhibit the osteosarcoma growth by killing CD133 + osteosarcoma CSCs. We demonstrated that Ap-SAL-NP have the potential to target and kill CD133 + osteosarcoma CSCs.

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Identification of selective inhibitors of cancer stem cells by high-throughput screening.

          Screens for agents that specifically kill epithelial cancer stem cells (CSCs) have not been possible due to the rarity of these cells within tumor cell populations and their relative instability in culture. We describe here an approach to screening for agents with epithelial CSC-specific toxicity. We implemented this method in a chemical screen and discovered compounds showing selective toxicity for breast CSCs. One compound, salinomycin, reduces the proportion of CSCs by >100-fold relative to paclitaxel, a commonly used breast cancer chemotherapeutic drug. Treatment of mice with salinomycin inhibits mammary tumor growth in vivo and induces increased epithelial differentiation of tumor cells. In addition, global gene expression analyses show that salinomycin treatment results in the loss of expression of breast CSC genes previously identified by analyses of breast tissues isolated directly from patients. This study demonstrates the ability to identify agents with specific toxicity for epithelial CSCs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Aptamers as therapeutics

            Key Points Aptamers are single-stranded oligonucleotides that fold into defined architectures and bind to targets such as proteins. In binding proteins they often inhibit protein–protein interactions and thereby may elicit therapeutic effects such as antagonism. Aptamers are discovered using SELEX (systematic evolution of ligands by exponential enrichment), a directed in vitro evolution technique in which large libraries of degenerate oligonucleotides are iteratively and alternately partitioned for target binding. They are then amplified enzymatically until functional sequences are identified by the sequencing of cloned individuals. For most therapeutic purposes, aptamers are truncated to reduce synthesis costs, modified at the sugars and capped at their termini to increase nuclease resistance, and conjugated to polyethylene glycol or another entity to reduce renal filtration rates. The first aptamer approved for a therapeutic application was pegaptanib sodium (Macugen; Pfizer/Eyetech), which was approved in 2004 by the US Food and Drug Administration for macular degeneration. Eight other aptamers are currently undergoing clinical evaluation for various haematology, oncology, ocular and inflammatory indications. Aptamers are ultimately chemically synthesized in a readily scalable process in which specific conjugation points are introduced with defined stereochemistry. Unlike some protein therapeutics, aptamers do not elicit antibodies, and because aptamers generally contain sugars modified at their 2′-positions, Toll-like receptor-mediated innate immune responses are also abrogated. As aptamers are oligonucleotides they can be readily assembled into supramolecular multi-component structures using hybridization. Owing to the fact that binding to appropriate cell-surface targets can lead to internalization, aptamers can also be used to deliver therapeutic cargoes such as small interfering RNA. Supramolecular assemblies of aptamers and delivery agents have already been demonstrated in vivo and may pave the way for further therapeutic strategies with this modality in the future.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Poised chromatin at the ZEB1 promoter enables breast cancer cell plasticity and enhances tumorigenicity.

              The recent discovery that normal and neoplastic epithelial cells re-enter the stem cell state raised the intriguing possibility that the aggressiveness of carcinomas derives not from their existing content of cancer stem cells (CSCs) but from their proclivity to generate new CSCs from non-CSC populations. Here, we demonstrate that non-CSCs of human basal breast cancers are plastic cell populations that readily switch from a non-CSC to CSC state. The observed cell plasticity is dependent on ZEB1, a key regulator of the epithelial-mesenchymal transition. We find that plastic non-CSCs maintain the ZEB1 promoter in a bivalent chromatin configuration, enabling them to respond readily to microenvironmental signals, such as TGFβ. In response, the ZEB1 promoter converts from a bivalent to active chromatin configuration, ZEB1 transcription increases, and non-CSCs subsequently enter the CSC state. Our findings support a dynamic model in which interconversions between low and high tumorigenic states occur frequently, thereby increasing tumorigenic and malignant potential. Copyright © 2013 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Int J Nanomedicine
                Int J Nanomedicine
                International Journal of Nanomedicine
                International Journal of Nanomedicine
                Dove Medical Press
                1176-9114
                1178-2013
                2015
                31 March 2015
                : 10
                : 2537-2554
                Affiliations
                [1 ]Department of Orthopedics, Jinshan Hospital, Fudan University, Shanghai, People’s Republic of China
                [2 ]International Joint Cancer Institute, The Second Military Medical University, Shanghai, People’s Republic of China
                Author notes
                Correspondence: Zuochong Yu, Department of Orthopedics, Jinshan Hospital, Fudan University, 1508 Longhang Road, Shanghai 201508, People’s Republic of China, Tel +86 21 3418 9990, Fax +86 21 6722 6910, Email tjyd327@ 123456126.com

                *These authors contributed equally to this work

                Article
                ijn-10-2537
                10.2147/IJN.S78498
                4386781
                25848270
                8925a32b-f9a2-48c3-9f85-180ff2a1559c
                © 2015 Ni et al. This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution – Non Commercial (unported, v3.0) License

                The full terms of the License are available at http://creativecommons.org/licenses/by-nc/3.0/. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Original Research

                Molecular medicine
                targeted therapy,ligand-conjugated nanomedicines,cancer initiating cells

                Comments

                Comment on this article