15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Ribosomal components neighboring the conserved 518-533 loop of 16S rRNA in 30S subunits.

      Biochemistry
      Autoradiography, Base Sequence, Chromatography, High Pressure Liquid, Conserved Sequence, Electrophoresis, Polyacrylamide Gel, Escherichia coli, genetics, Immunoblotting, Molecular Sequence Data, Oligodeoxyribonucleotides, chemical synthesis, chemistry, Oligonucleotide Probes, Phosphorylation, RNA, Ribosomal, 16S, Ribonuclease H, metabolism

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We report the synthesis of a radioactive, photolabile oligodeoxyribonucleotide probe complementary to 16S rRNA nucleotides 518-526 and its exploitation in identifying 30S ribosomal subunit components neighboring its target site in 16S rRNA. Nucleotides 518-526 lie within an almost universally conserved single-stranded loop that has been linked to the decoding region of Escherichia coli ribosomes. On photolysis in the presence of activated 30S ribosomes, the probe site-specifically incorporates into proteins S3, S4, S7, and S12 (identified by SDS-PAGE, RP-HPLC, and immunological analysis); nucleotides C525, C526, and G527 adjacent to its target binding site; and the 3'-terminus of 16S rRNA. When the probe is photoincorporated into 30S subunits subjected to brief cold inactivation (SI subunits), S7 labeling is increased compared to activated subunit incorporation, while S3, S4, and S12 labeling is decreased, as is labeling to nucleotides C525, C526, and G527; labeling at the 16S rRNA 3'-terminus appears unchanged. Longer cold inactivation of the 30S subunits (LI subunits) leads to decreases in the labeling of all components. These results provide clear evidence that C526 lies within 24 A (the distance between C526 and the photogenerated nitrene) of proteins S3, S4, S7, and S12 and the 3'-terminus of 16S rRNA. The identity of the tryptic digestion patterns of S7 labeled with the probe complementary to 16S rRNA nucleotides 518-526 and with a probe complementary to nucleotides 1397-1405 [Muralikrishna, P., & Cooperman, B. S. (1994) Biochemistry 33, 1392-1398] also provides evidence for proximity between C526 and G1405. Our results support the conclusion of Dontsova et al. [Dontsova, O., et al. (1992) EMBO J. 11, 3105-3116] in placing the 530 loop in close proximity to the decoding center of the 30S subunit but are apparently inconsistent with some protein-protein distances determined by neutron diffraction [Capel, M. S., et al. (1988) J. Mol. Biol. 200, 65-87]. This inconsistency suggests that a multistate model of subunit conformation may be required to account for the totality of results pertaining to the internal structure of the 30S subunit.

          Related collections

          Author and article information

          Comments

          Comment on this article