169
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Complex chromosome rearrangements related 15q14 microdeletion plays a relevant role in phenotype expression and delineates a novel recurrent syndrome

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Complex chromosome rearrangements are constitutional structural rearrangements involving three or more chromosomes or having more than two breakpoints. These are rarely seen in the general population but their frequency should be much higher due to balanced states with no phenotypic presentation. These abnormalities preferentially occur de novo during spermatogenesis and are transmitted in families through oogenesis.

          Here, we report a de novo complex chromosome rearrangement that interests eight chromosomes in eighteen-year-old boy with an abnormal phenotype consisting in moderate developmental delay, cleft palate, and facial dysmorphisms.

          Standard G-banding revealed four apparently balanced traslocations involving the chromosomes 1;13, 3;19, 9;15 and 14;18 that appeared to be reciprocal. Array-based comparative genomic hybridization analysis showed no imbalances at all the breakpoints observed except for an interstitial microdeletion on chromosome 15. This deletion is 1.6 Mb in size and is located at chromosome band 15q14, distal to the Prader-Willi/Angelman region. Comparing the features of our patient with published reports of patients with 15q14 deletion this finding corresponds to the smallest genomic region of overlap. The deleted segment at 15q14 was investigated for gene content.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          A DNA replication mechanism for generating nonrecurrent rearrangements associated with genomic disorders.

          The prevailing mechanism for recurrent and some nonrecurrent rearrangements causing genomic disorders is nonallelic homologous recombination (NAHR) between region-specific low-copy repeats (LCRs). For other nonrecurrent rearrangements, nonhomologous end joining (NHEJ) is implicated. Pelizaeus-Merzbacher disease (PMD) is an X-linked dysmyelinating disorder caused most frequently (60%-70%) by nonrecurrent duplication of the dosage-sensitive proteolipid protein 1 (PLP1) gene but also by nonrecurrent deletion or point mutations. Many PLP1 duplication junctions are refractory to breakpoint sequence analysis, an observation inconsistent with a simple recombination mechanism. Our current analysis of junction sequences in PMD patients confirms the occurrence of simple tandem PLP1 duplications but also uncovers evidence for sequence complexity at some junctions. These data are consistent with a replication-based mechanism that we term FoSTeS, for replication Fork Stalling and Template Switching. We propose that complex duplication and deletion rearrangements associated with PMD, and potentially other nonrecurrent rearrangements, may be explained by this replication-based mechanism.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Complex human chromosomal and genomic rearrangements.

            Copy number variation (CNV) is a major source of genetic variation among humans. In addition to existing as benign polymorphisms, CNVs can also convey clinical phenotypes, including genomic disorders, sporadic diseases and complex human traits. CNV results from genomic rearrangements that can represent simple deletion or duplication of a genomic segment, or be more complex. Complex chromosomal rearrangements (CCRs) have been known for some time but their mechanisms have remained elusive. Recent technology advances and high-resolution human genome analyses have revealed that complex genomic rearrangements can account for a large fraction of non-recurrent rearrangements at a given locus. Various mechanisms, most of which are DNA-replication-based, for example fork stalling and template switching (FoSTeS) and microhomology-mediated break-induced replication (MMBIR), have been proposed for generating such complex genomic rearrangements and are probably responsible for CCR.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Comparative genomic hybridization.

              Altering DNA copy number is one of the many ways that gene expression and function may be modified. Some variations are found among normal individuals ( 14, 35, 103 ), others occur in the course of normal processes in some species ( 33 ), and still others participate in causing various disease states. For example, many defects in human development are due to gains and losses of chromosomes and chromosomal segments that occur prior to or shortly after fertilization, whereas DNA dosage alterations that occur in somatic cells are frequent contributors to cancer. Detecting these aberrations, and interpreting them within the context of broader knowledge, facilitates identification of critical genes and pathways involved in biological processes and diseases, and provides clinically relevant information. Over the past several years array comparative genomic hybridization (array CGH) has demonstrated its value for analyzing DNA copy number variations. In this review we discuss the state of the art of array CGH and its applications in medical genetics and cancer, emphasizing general concepts rather than specific results.
                Bookmark

                Author and article information

                Journal
                Orphanet J Rare Dis
                Orphanet Journal of Rare Diseases
                BioMed Central
                1750-1172
                2011
                19 April 2011
                : 6
                : 17
                Affiliations
                [1 ]Cytogenetics and Molecular Genetics Unit - Bambino Gesù Children's Hospital, Rome 00165, Italy
                [2 ]Medical Genetics Unit - Bambino Gesù Children's Hospital, Rome 00165, Italy
                Article
                1750-1172-6-17
                10.1186/1750-1172-6-17
                3096895
                21504564
                89320456-278c-4cd6-aba7-fb295736c4e5
                Copyright ©2011 Roberti et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 27 October 2010
                : 19 April 2011
                Categories
                Case Report

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article