26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Leptin produced by obese adipose stromal/stem cells enhances proliferation and metastasis of estrogen receptor positive breast cancers

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Introduction

          The steady increase in the incidence of obesity among adults has been paralleled with higher levels of obesity-associated breast cancer. While recent studies have suggested that adipose stromal/stem cells (ASCs) isolated from obese women enhance tumorigenicity, the mechanism(s) by which this occurs remains undefined. Evidence suggests that increased adiposity results in increased leptin secretion from adipose tissue, which has been shown to increased cancer cell proliferation. Previously, our group demonstrated that ASCs isolated from obese women (obASCs) also express higher levels of leptin relative to ASCs isolated from lean women (lnASCs) and that this obASC-derived leptin may account for enhanced breast cancer cell growth. The current study investigates the impact of inhibiting leptin expression in lnASCs and obASCs on breast cancer cell (BCC) growth and progression.

          Methods

          Estrogen receptor positive (ER+) BCCs were co-cultured with leptin shRNA lnASCs or leptin shRNA obASCs and changes in the proliferation, migration, invasion, and gene expression of BCCs were investigated. To assess the direct impact of leptin inhibition in obASCs on BCC proliferation, MCF7 cells were injected alone or mixed with control shRNA obASCs or leptin shRNA obASCs into SCID/beige mice.

          Results

          ER+ BCCs were responsive to obASCs during direct co-culture, whereas lnASCs were unable to increase ER + BCC growth. shRNA silencing of leptin in obASCs negated the enhanced proliferative effects of obASC on BCCs following direct co-culture. BCCs co-cultured with obASCs demonstrated enhanced expression of epithelial-to-mesenchymal transition (EMT) and metastasis genes (SERPINE1, MMP-2, and IL-6), while BCCs co-cultured with leptin shRNA obASCs did not display similar levels of gene induction. Knockdown of leptin significantly reduced tumor volume and decreased the number of metastatic lesions to the lung and liver. These results correlated with reduced expression of both SERPINE1 and MMP-2 in tumors formed with MCF7 cells mixed with leptin shRNA obASCs, when compared to tumors formed with MCF7 cells mixed with control shRNA obASCs.

          Conclusion

          This study provides mechanistic insight as to how obesity enhances the proliferation and metastasis of breast cancer cells; specifically, obASC-derived leptin contributes to the aggressiveness of breast cancer in obese women.

          Electronic supplementary material

          The online version of this article (doi:10.1186/s13058-015-0622-z) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          Intracellular signalling pathways activated by leptin.

          Leptin is a versatile 16 kDa peptide hormone, with a tertiary structure resembling that of members of the long-chain helical cytokine family. It is mainly produced by adipocytes in proportion to fat size stores, and was originally thought to act only as a satiety factor. However, the ubiquitous distribution of OB-R leptin receptors in almost all tissues underlies the pleiotropism of leptin. OB-Rs belong to the class I cytokine receptor family, which is known to act through JAKs (Janus kinases) and STATs (signal transducers and activators of transcription). The OB-R gene is alternatively spliced to produce at least five isoforms. The full-length isoform, OB-Rb, contains intracellular motifs required for activation of the JAK/STAT signal transduction pathway, and is considered to be the functional receptor. Considerable evidence for systemic effects of leptin on body mass control, reproduction, angiogenesis, immunity, wound healing, bone remodelling and cardiovascular function, as well as on specific metabolic pathways, indicates that leptin operates both directly and indirectly to orchestrate complex pathophysiological processes. Consistent with leptin's pleiotropic role, its participation in and crosstalk with some of the main signalling pathways, including those involving insulin receptor substrates, phosphoinositide 3-kinase, protein kinase B, protein kinase C, extracellular-signal-regulated kinase, mitogen-activated protein kinases, phosphodiesterase, phospholipase C and nitric oxide, has been observed. The impact of leptin on several equally relevant signalling pathways extends also to Rho family GTPases in relation to the actin cytoskeleton, production of reactive oxygen species, stimulation of prostaglandins, binding to diacylglycerol kinase and catecholamine secretion, among others.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Tumor-induced perturbations of cytokines and immune cell networks.

            Until recently, the intrinsically high level of cross-talk between immune cells, the complexity of immune cell development, and the pleiotropic nature of cytokine signaling have hampered progress in understanding the mechanisms of immunosuppression by which tumor cells circumvent native and adaptive immune responses. One technology that has helped to shed light on this complex signaling network is the cytokine antibody array, which facilitates simultaneous screening of dozens to hundreds of secreted signal proteins in complex biological samples. The combined applications of traditional methods of molecular and cell biology with the high-content, high-throughput screening capabilities of cytokine antibody arrays and other multiplexed immunoassays have revealed a complex mechanism that involves multiple cytokine signals contributed not just by tumor cells but by stromal cells and a wide spectrum of immune cell types. This review will summarize the interactions among cancerous and immune cell types, as well as the key cytokine signals that are required for tumors to survive immunoediting in a dormant state or to grow and spread by escaping it. Additionally, it will present examples of how probing secreted cell-cell signal networks in the tumor microenvironment (TME) with cytokine screens have contributed to our current understanding of these processes and discuss the implications of this understanding to antitumor therapies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Leptin--a growth factor in normal and malignant breast cells and for normal mammary gland development.

              Obesity is a risk factor for breast cancer in postmenopausal women. As body weight and fat mass increase, circulating leptin increases. Leptin is an adipocyte-derived cytokine that acts through the long form of its receptor, termed OB-Rb. To investigate whether leptin is associated with breast cancer, we determined the expression of OB-Rb in human breast epithelial HBL100 cells and human breast carcinoma-derived T-47D cells, determined whether leptin influenced the proliferation of these cells, and evaluated the structure of mammary tissue in genetically obese leptin-deficient Lep(ob)Lep(ob) and leptin receptor-deficient Lepr(db)Lepr(db) mice. Cell numbers and cell colony formation by HBL100 and T-47D cells were determined by anchorage-dependent and anchorage-independent growth assays. OB-Rb expression was examined by reverse transcription-polymerase chain reaction and immunoblot analyses. Expression of leptin signaling pathway components was evaluated with immunoblot and electrophoretic mobility shift assays. Mammary gland development in lean and obese mice was investigated in whole-mount studies. All statistical tests were two-sided. Leptin enhanced anchorage-dependent proliferation by 138% (95% confidence interval [CI] = 108% to 169%) in T-47D cells and 50% (95% CI = 38% to 60%) in HBL100 cells. In both cell lines, OB-Rb was expressed, and leptin increased the expression of phosphorylated signal transducers and activators of transcription 3 (STAT3), phosphorylated extracellular signal-regulated kinase (ERK), and transcript activator protein 1 (AP-1). However, leptin increased anchorage-independent cell growth only in the breast cancer cell line (by 81% [95% CI = 62% to 101%] compared with untreated cells). Obese Lep(ob)Lep(ob) and Lepr(db)Lepr(db) mice had minimal epithelial development in the mature mammary gland compared with their lean counterparts. Leptin appears to be able to control the proliferation of both normal and malignant breast epithelial cells. Consequently, the leptin pathway should be further studied as a target for interventions to treat or prevent breast cancer.
                Bookmark

                Author and article information

                Contributors
                alin1@tulane.edu
                johlstei@tulane.edu
                bbiagas@tulane.edu
                lvanhoy@tulane.edu
                dpei@tulane.edu
                atucker@tulane.edu
                cllamas@tulane.edu
                abowles@tulane.edu
                mdutreil@tulane.edu
                szhang@tulane.edu
                jgimble@tulane.edu
                mburow@tulane.edu
                (504) 988-7711 , bbunnell@tulane.edu
                Journal
                Breast Cancer Res
                Breast Cancer Res
                Breast Cancer Research : BCR
                BioMed Central (London )
                1465-5411
                1465-542X
                19 August 2015
                19 August 2015
                2015
                : 17
                : 1
                : 112
                Affiliations
                [ ]Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, 1430 Tulane Avenue, SL-99, New Orleans, LA 70112 USA
                [ ]Department of Medicine, Section of Hematology and Medical Oncology, Tulane University Health Sciences Center, New Orleans, LA 70112 USA
                [ ]Departments of Medicine and Surgery, Tulane University Health Sciences Center, New Orleans, LA 70112 USA
                [ ]Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA 70112 USA
                Article
                622
                10.1186/s13058-015-0622-z
                4541745
                26286584
                8938c81f-e032-43ca-924b-d25f25938ddb
                © Strong et al. 2015

                Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 11 March 2015
                : 23 July 2015
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2015

                Oncology & Radiotherapy
                Oncology & Radiotherapy

                Comments

                Comment on this article