18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Pharmacological properties of Rheum turkestanicum Janisch

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Medicinal herbs have been increasingly used worldwide for diseases prevention and treatment. Rheum turkestanicum Janisch. is a perennial shrub of the Polygonaceae family. Genus Rheum includes more than 60 species growing around the world which are used in foods and traditional medicines. R. turkestanicum is believed to be able to improve different kinds of disorders including diabetes, hypertension, jaundice and cancer. In recent years, this medicinal plant has been a subject of many experimental studies to document its health-beneficial properties. These studies have revealed antidiabetic, anticancer, nephroprotective, cardioprotective, and hepatoprotective properties of R. turkestanicum. The presence of flavonoids (e.g. epicatechin and quercetin) and anthraquinones (e.g. chrysophanol, physcion, and emodin) in R. turkestanicum justifies its health-beneficial effects. Nevertheless, possible therapeutic applications and safety of this plant still need to be elucidated in further clinical studies.

          Related collections

          Most cited references127

          • Record: found
          • Abstract: not found
          • Article: not found

          Antioxidant and anti-inflammatory activities of quercetin and its derivatives

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Anticancer potential of quercetin: A comprehensive review

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Protective effect of quercetin on high-fat diet-induced non-alcoholic fatty liver disease in mice is mediated by modulating intestinal microbiota imbalance and related gut-liver axis activation.

              Gut microbiota is involved in obesity, metabolic syndrome and the progression of nonalcoholic fatty liver disease (NAFLD). It has been recently suggested that the flavonoid quercetin may have the ability to modulate the intestinal microbiota composition, suggesting a prebiotic capacity which highlights a great therapeutic potential in NAFLD. The present study aims to investigate benefits of experimental treatment with quercetin on gut microbial balance and related gut-liver axis activation in a nutritional animal model of NAFLD associated to obesity. C57BL/6J mice were challenged with high fat diet (HFD) supplemented or not with quercetin for 16 weeks. HFD induced obesity, metabolic syndrome and the development of hepatic steatosis as main hepatic histological finding. Increased accumulation of intrahepatic lipids was associated with altered gene expression related to lipid metabolism, as a result of deregulation of their major modulators. Quercetin supplementation decreased insulin resistance and NAFLD activity score, by reducing the intrahepatic lipid accumulation through its ability to modulate lipid metabolism gene expression, cytochrome P450 2E1 (CYP2E1)-dependent lipoperoxidation and related lipotoxicity. Microbiota composition was determined via 16S ribosomal RNA Illumina next-generation sequencing. Metagenomic studies revealed HFD-dependent differences at phylum, class and genus levels leading to dysbiosis, characterized by an increase in Firmicutes/Bacteroidetes ratio and in Gram-negative bacteria, and a dramatically increased detection of Helicobacter genus. Dysbiosis was accompanied by endotoxemia, intestinal barrier dysfunction and gut-liver axis alteration and subsequent inflammatory gene overexpression. Dysbiosis-mediated toll-like receptor 4 (TLR-4)-NF-κB signaling pathway activation was associated with inflammasome initiation response and reticulum stress pathway induction. Quercetin reverted gut microbiota imbalance and related endotoxemia-mediated TLR-4 pathway induction, with subsequent inhibition of inflammasome response and reticulum stress pathway activation, leading to the blockage of lipid metabolism gene expression deregulation. Our results support the suitability of quercetin as a therapeutic approach for obesity-associated NAFLD via its anti-inflammatory, antioxidant and prebiotic integrative response.
                Bookmark

                Author and article information

                Contributors
                Journal
                Heliyon
                Heliyon
                Heliyon
                Elsevier
                2405-8440
                23 June 2019
                June 2019
                23 June 2019
                : 5
                : 6
                : e01986
                Affiliations
                [a ]Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
                [b ]Department of Biology, Payame Noor University, Tehran, Iran
                Author notes
                []Corresponding author. hoseiniaz@ 123456mums.ac.ir
                Article
                S2405-8440(19)35611-7 e01986
                10.1016/j.heliyon.2019.e01986
                6595136
                31294125
                893e3078-9e81-4159-9889-11f8e8557336
                © 2019 The Authors

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 18 December 2018
                : 14 April 2019
                : 18 June 2019
                Categories
                Article

                plant biology,nutrition,diabetes,rhubarb,anticancer,toxicity,rheum turkestanicum

                Comments

                Comment on this article