9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Water-level attenuation in global-scale assessments of exposure to coastal flooding: a sensitivity analysis

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Abstract. This study explores the uncertainty introduced in global assessments of coastal flood exposure and risk when not accounting for water-level attenuation due to land-surface characteristics. We implement a range of plausible water-level attenuation values for characteristic land-cover classes in the flood module of the Dynamic and Integrated Vulnerability Assessment (DIVA) modelling framework and assess the sensitivity of flood exposure and flood risk indicators to differences in attenuation rates. Results show a reduction of up to 44 % in area exposure and even larger reductions in population exposure and expected flood damages when considering water-level attenuation. The reductions vary by country, reflecting the differences in the physical characteristics of the floodplain as well as in the spatial distribution of people and assets in coastal regions. We find that uncertainties related to not accounting for water attenuation in global assessments of flood risk are of similar magnitude to the uncertainties related to the amount of sea-level rise expected over the 21st century. Despite using simplified assumptions to account for the process of water-level attenuation, which depends on numerous factors and their complex interactions, our results strongly suggest that an improved understanding and representation of the temporal and spatial variation of water levels across floodplains is essential for future impact modelling.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: not found
          • Article: not found

          A new scenario framework for climate change research: the concept of shared socioeconomic pathways

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Coastal flood damage and adaptation costs under 21st century sea-level rise.

            Coastal flood damage and adaptation costs under 21st century sea-level rise are assessed on a global scale taking into account a wide range of uncertainties in continental topography data, population data, protection strategies, socioeconomic development and sea-level rise. Uncertainty in global mean and regional sea level was derived from four different climate models from the Coupled Model Intercomparison Project Phase 5, each combined with three land-ice scenarios based on the published range of contributions from ice sheets and glaciers. Without adaptation, 0.2-4.6% of global population is expected to be flooded annually in 2100 under 25-123 cm of global mean sea-level rise, with expected annual losses of 0.3-9.3% of global gross domestic product. Damages of this magnitude are very unlikely to be tolerated by society and adaptation will be widespread. The global costs of protecting the coast with dikes are significant with annual investment and maintenance costs of US$ 12-71 billion in 2100, but much smaller than the global cost of avoided damages even without accounting for indirect costs of damage to regional production supply. Flood damages by the end of this century are much more sensitive to the applied protection strategy than to variations in climate and socioeconomic scenarios as well as in physical data sources (topography and climate model). Our results emphasize the central role of long-term coastal adaptation strategies. These should also take into account that protecting large parts of the developed coast increases the risk of catastrophic consequences in the case of defense failure.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ecosystem-based coastal defence in the face of global change.

              The risk of flood disasters is increasing for many coastal societies owing to global and regional changes in climate conditions, sea-level rise, land subsidence and sediment supply. At the same time, in many locations, conventional coastal engineering solutions such as sea walls are increasingly challenged by these changes and their maintenance may become unsustainable. We argue that flood protection by ecosystem creation and restoration can provide a more sustainable, cost-effective and ecologically sound alternative to conventional coastal engineering and that, in suitable locations, it should be implemented globally and on a large scale.
                Bookmark

                Author and article information

                Journal
                Natural Hazards and Earth System Sciences
                Nat. Hazards Earth Syst. Sci.
                Copernicus GmbH
                1684-9981
                2019
                May 03 2019
                : 19
                : 5
                : 973-984
                Article
                10.5194/nhess-19-973-2019
                894817aa-4004-49d3-b0f5-70e2817f3c9d
                © 2019

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article