59
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Expression Quantitative Trait Loci Are Highly Sensitive to Cellular Differentiation State

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Genetical genomics is a strategy for mapping gene expression variation to expression quantitative trait loci (eQTLs). We performed a genetical genomics experiment in four functionally distinct but developmentally closely related hematopoietic cell populations isolated from the BXD panel of recombinant inbred mouse strains. This analysis allowed us to analyze eQTL robustness/sensitivity across different cellular differentiation states. Although we identified a large number (365) of “ static” eQTLs that were consistently active in all four cell types, we found a much larger number (1,283) of “ dynamic” eQTLs showing cell-type–dependence. Of these, 140, 45, 531, and 295 were preferentially active in stem, progenitor, erythroid, and myeloid cells, respectively. A detailed investigation of those dynamic eQTLs showed that in many cases the eQTL specificity was associated with expression changes in the target gene. We found no evidence for target genes that were regulated by distinct eQTLs in different cell types, suggesting that large-scale changes within functional regulatory networks are uncommon. Our results demonstrate that heritable differences in gene expression are highly sensitive to the developmental stage of the cell population under study. Therefore, future genetical genomics studies should aim at studying multiple well-defined and highly purified cell types in order to construct as comprehensive a picture of the changing functional regulatory relationships as possible.

          Author Summary

          Blood cell development from multipotent hematopoietic stem cells to specialized blood cells is accompanied by drastic changes in gene expression for which the triggers remain mostly unknown. Genetical genomics is an approach linking natural genetic variation to gene expression variation, thereby allowing the identification of genomic loci containing gene expression modulators (eQTLs). In this paper, we used a genetical genomics approach to analyze gene expression across four developmentally close blood cell types collected from a large number of genetically different but related mouse strains. We found that, while a significant number of eQTLs (365) had a consistent “ static” regulatory effect on gene expression, an even larger number were found to be very sensitive to cell stage. As many as 1,283 eQTLs exhibited a “ dynamic” behavior across cell types. By looking more closely at these dynamic eQTLs, we show that the sensitivity of eQTLs to cell stage is largely associated with gene expression changes in target genes. These results stress the importance of studying gene expression variation in well-defined cell populations. Only such studies will be able to reveal the important differences in gene regulation between different cell types.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Genetics of gene expression and its effect on disease.

          Common human diseases result from the interplay of many genes and environmental factors. Therefore, a more integrative biology approach is needed to unravel the complexity and causes of such diseases. To elucidate the complexity of common human diseases such as obesity, we have analysed the expression of 23,720 transcripts in large population-based blood and adipose tissue cohorts comprehensively assessed for various phenotypes, including traits related to clinical obesity. In contrast to the blood expression profiles, we observed a marked correlation between gene expression in adipose tissue and obesity-related traits. Genome-wide linkage and association mapping revealed a highly significant genetic component to gene expression traits, including a strong genetic effect of proximal (cis) signals, with 50% of the cis signals overlapping between the two tissues profiled. Here we demonstrate an extensive transcriptional network constructed from the human adipose data that exhibits significant overlap with similar network modules constructed from mouse adipose data. A core network module in humans and mice was identified that is enriched for genes involved in the inflammatory and immune response and has been found to be causally associated to obesity-related traits.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genetics of gene expression surveyed in maize, mouse and man.

            Treating messenger RNA transcript abundances as quantitative traits and mapping gene expression quantitative trait loci for these traits has been pursued in gene-specific ways. Transcript abundances often serve as a surrogate for classical quantitative traits in that the levels of expression are significantly correlated with the classical traits across members of a segregating population. The correlation structure between transcript abundances and classical traits has been used to identify susceptibility loci for complex diseases such as diabetes and allergic asthma. One study recently completed the first comprehensive dissection of transcriptional regulation in budding yeast, giving a detailed glimpse of a genome-wide survey of the genetics of gene expression. Unlike classical quantitative traits, which often represent gross clinical measurements that may be far removed from the biological processes giving rise to them, the genetic linkages associated with transcript abundance affords a closer look at cellular biochemical processes. Here we describe comprehensive genetic screens of mouse, plant and human transcriptomes by considering gene expression values as quantitative traits. We identify a gene expression pattern strongly associated with obesity in a murine cross, and observe two distinct obesity subtypes. Furthermore, we find that these obesity subtypes are under the control of different loci.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Genetic analysis of genome-wide variation in human gene expression.

              Natural variation in gene expression is extensive in humans and other organisms, and variation in the baseline expression level of many genes has a heritable component. To localize the genetic determinants of these quantitative traits (expression phenotypes) in humans, we used microarrays to measure gene expression levels and performed genome-wide linkage analysis for expression levels of 3,554 genes in 14 large families. For approximately 1,000 expression phenotypes, there was significant evidence of linkage to specific chromosomal regions. Both cis- and trans-acting loci regulate variation in the expression levels of genes, although most act in trans. Many gene expression phenotypes are influenced by several genetic determinants. Furthermore, we found hotspots of transcriptional regulation where significant evidence of linkage for several expression phenotypes (up to 31) coincides, and expression levels of many genes that share the same regulatory region are significantly correlated. The combination of microarray techniques for phenotyping and linkage analysis for quantitative traits allows the genetic mapping of determinants that contribute to variation in human gene expression.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                October 2009
                October 2009
                16 October 2009
                : 5
                : 10
                : e1000692
                Affiliations
                [1 ]Department of Cell Biology, Section Stem Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
                [2 ]Groningen Bioinformatics Centre, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Haren, The Netherlands
                [3 ]Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
                [4 ]Institute of Bioinformatics, Zhejiang University, Hangzhou, China
                Georgia Institute of Technology, United States of America
                Author notes

                Conceived and designed the experiments: LVB RCJ GdH. Performed the experiments: AG LVB EW AA BD. Analyzed the data: AG YL BMT RB. Contributed reagents/materials/analysis tools: YL BMT XW RB RCJ. Wrote the paper: AG YL BMT RB RCJ GdH.

                Article
                09-PLGE-RA-0711R2
                10.1371/journal.pgen.1000692
                2757904
                19834560
                8951feba-f371-456d-9f8d-fea86e368113
                Gerrits et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 29 April 2009
                : 17 September 2009
                Page count
                Pages: 8
                Categories
                Research Article
                Cell Biology
                Computational Biology
                Genetics and Genomics
                Hematology
                Molecular Biology

                Genetics
                Genetics

                Comments

                Comment on this article