36
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The role of sex-differential biology in risk for autism spectrum disorder

      review-article
      Biology of Sex Differences
      BioMed Central
      Autism spectrum disorder, Autism, Sex differences, Prevalence, Female protective effect, Testosterone

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Autism spectrum disorder (ASD) is a developmental condition that affects approximately four times as many males as females, a strong sex bias that has not yet been fully explained. Understanding the causes of this biased prevalence may highlight novel avenues for treatment development that could benefit patients with diverse genetic backgrounds, and the expertise of sex differences researchers will be invaluable in this endeavor. In this review, I aim to assess current evidence pertaining to the sex difference in ASD prevalence and to identify outstanding questions and remaining gaps in our understanding of how males come to be more frequently affected and/or diagnosed with ASD. Though males consistently outnumber females in ASD prevalence studies, prevalence estimates generated using different approaches report male/female ratios of variable magnitude that suggest that ascertainment or diagnostic biases may contribute to the male skew in ASD. Here, I present the different methods applied and implications of their findings. Additionally, even as prevalence estimations challenge the degree of male bias in ASD, support is growing for the long-proposed female protective effect model of ASD risk, and I review the relevant results from recurrence rate, quantitative trait, and genetic analyses. Lastly, I describe work investigating several sex-differential biological factors and pathways that may be responsible for females’ protection and/or males’ increased risk predicted by the female protective effect model, including sex steroid hormone exposure and regulation and sex-differential activity of certain neural cell types. However, much future work from both the ASD and sex differences research communities will be required to flesh out our understanding of how these factors act to influence the developing brain and modulate ASD risk.

          Related collections

          Most cited references61

          • Record: found
          • Abstract: found
          • Article: not found

          De novo gene disruptions in children on the autistic spectrum.

          Exome sequencing of 343 families, each with a single child on the autism spectrum and at least one unaffected sibling, reveal de novo small indels and point substitutions, which come mostly from the paternal line in an age-dependent manner. We do not see significantly greater numbers of de novo missense mutations in affected versus unaffected children, but gene-disrupting mutations (nonsense, splice site, and frame shifts) are twice as frequent, 59 to 28. Based on this differential and the number of recurrent and total targets of gene disruption found in our and similar studies, we estimate between 350 and 400 autism susceptibility genes. Many of the disrupted genes in these studies are associated with the fragile X protein, FMRP, reinforcing links between autism and synaptic plasticity. We find FMRP-associated genes are under greater purifying selection than the remainder of genes and suggest they are especially dosage-sensitive targets of cognitive disorders. Copyright © 2012 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Advances in autism genetics: on the threshold of a new neurobiology.

            Autism is a heterogeneous syndrome defined by impairments in three core domains: social interaction, language and range of interests. Recent work has led to the identification of several autism susceptibility genes and an increased appreciation of the contribution of de novo and inherited copy number variation. Promising strategies are also being applied to identify common genetic risk variants. Systems biology approaches, including array-based expression profiling, are poised to provide additional insights into this group of disorders, in which heterogeneity, both genetic and phenotypic, is emerging as a dominant theme.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism.

              Many studies have supported a genetic etiology for autism. Here we report mutations in two X-linked genes encoding neuroligins NLGN3 and NLGN4 in siblings with autism-spectrum disorders. These mutations affect cell-adhesion molecules localized at the synapse and suggest that a defect of synaptogenesis may predispose to autism.
                Bookmark

                Author and article information

                Contributors
                donna.werling@ucsf.edu
                Journal
                Biol Sex Differ
                Biol Sex Differ
                Biology of Sex Differences
                BioMed Central (London )
                2042-6410
                16 November 2016
                16 November 2016
                2016
                : 7
                : 58
                Affiliations
                Department of Psychiatry, University of California, San Francisco, San Francisco, CA 94143 USA
                Article
                112
                10.1186/s13293-016-0112-8
                5112643
                27891212
                89622a05-33bd-48d3-9acc-0ddf3b5100c6
                © The Author(s). 2016

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 17 June 2016
                : 27 October 2016
                Funding
                Funded by: FundRef http://dx.doi.org/http://dx.doi.org/10.13039/100000025, National Institute of Mental Health;
                Award ID: MH106934
                Funded by: FundRef http://dx.doi.org/http://dx.doi.org/10.13039/100000893, Simons Foundation;
                Award ID: 307705
                Funded by: FundRef http://dx.doi.org/10.13039/100008152, Autism Science Foundation;
                Award ID: 16-009
                Award Recipient :
                Categories
                Review
                Custom metadata
                © The Author(s) 2016

                Human biology
                autism spectrum disorder,autism,sex differences,prevalence,female protective effect,testosterone

                Comments

                Comment on this article