41
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Prediction and Prioritization of Rare Oncogenic Mutations in the Cancer Kinome Using Novel Features and Multiple Classifiers

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cancer is a genetic disease that develops through a series of somatic mutations, a subset of which drive cancer progression. Although cancer genome sequencing studies are beginning to reveal the mutational patterns of genes in various cancers, identifying the small subset of “causative” mutations from the large subset of “non-causative” mutations, which accumulate as a consequence of the disease, is a challenge. In this article, we present an effective machine learning approach for identifying cancer-associated mutations in human protein kinases, a class of signaling proteins known to be frequently mutated in human cancers. We evaluate the performance of 11 well known supervised learners and show that a multiple-classifier approach, which combines the performances of individual learners, significantly improves the classification of known cancer-associated mutations. We introduce several novel features related specifically to structural and functional characteristics of protein kinases and find that the level of conservation of the mutated residue at specific evolutionary depths is an important predictor of oncogenic effect. We consolidate the novel features and the multiple-classifier approach to prioritize and experimentally test a set of rare unconfirmed mutations in the epidermal growth factor receptor tyrosine kinase (EGFR). Our studies identify T725M and L861R as rare cancer-associated mutations inasmuch as these mutations increase EGFR activity in the absence of the activating EGF ligand in cell-based assays.

          Author Summary

          Cancer progresses by accumulation of mutations in a subset of genes that confer growth advantage. The 518 protein kinase genes encoded in the human genome, collectively called the kinome, represent one of the largest families of oncogenes. Targeted sequencing studies of many different cancers have shown that the mutational landscape comprises both cancer-causing “driver” mutations and harmless “passenger” mutations. While the frequent recurrence of some driver mutations in human cancers helps distinguish them from the large number of passenger mutations, a significant challenge is to identify the rare “driver” mutations that are less frequently observed in patient samples and yet are causative. Here we combine computational and experimental approaches to identify rare cancer-associated mutations in Epidermal Growth Factor receptor kinase (EGFR), a signaling protein frequently mutated in cancers. Specifically, we evaluate a novel multiple-classifier approach and features specific to the protein kinase super-family in distinguishing known cancer-associated mutations from benign mutations. We then apply the multiple classifier to identify and test the functional impact of rare cancer-associated mutations in EGFR. We report, for the first time, that the EGFR mutations T725M and L861R, which are infrequently observed in cancers, constitutively activate EGFR in a manner analogous to the frequently observed driver mutations.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          The protein kinase complement of the human genome.

          G. Manning (2002)
          We have catalogued the protein kinase complement of the human genome (the "kinome") using public and proprietary genomic, complementary DNA, and expressed sequence tag (EST) sequences. This provides a starting point for comprehensive analysis of protein phosphorylation in normal and disease states, as well as a detailed view of the current state of human genome analysis through a focus on one large gene family. We identify 518 putative protein kinase genes, of which 71 have not previously been reported or described as kinases, and we extend or correct the protein sequences of 56 more kinases. New genes include members of well-studied families as well as previously unidentified families, some of which are conserved in model organisms. Classification and comparison with model organism kinomes identified orthologous groups and highlighted expansions specific to human and other lineages. We also identified 106 protein kinase pseudogenes. Chromosomal mapping revealed several small clusters of kinase genes and revealed that 244 kinases map to disease loci or cancer amplicons.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Amino acid substitution matrices from protein blocks.

            Methods for alignment of protein sequences typically measure similarity by using a substitution matrix with scores for all possible exchanges of one amino acid with another. The most widely used matrices are based on the Dayhoff model of evolutionary rates. Using a different approach, we have derived substitution matrices from about 2000 blocks of aligned sequence segments characterizing more than 500 groups of related proteins. This led to marked improvements in alignments and in searches using queries from each of the groups.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Patterns of somatic mutation in human cancer genomes.

              Cancers arise owing to mutations in a subset of genes that confer growth advantage. The availability of the human genome sequence led us to propose that systematic resequencing of cancer genomes for mutations would lead to the discovery of many additional cancer genes. Here we report more than 1,000 somatic mutations found in 274 megabases (Mb) of DNA corresponding to the coding exons of 518 protein kinase genes in 210 diverse human cancers. There was substantial variation in the number and pattern of mutations in individual cancers reflecting different exposures, DNA repair defects and cellular origins. Most somatic mutations are likely to be 'passengers' that do not contribute to oncogenesis. However, there was evidence for 'driver' mutations contributing to the development of the cancers studied in approximately 120 genes. Systematic sequencing of cancer genomes therefore reveals the evolutionary diversity of cancers and implicates a larger repertoire of cancer genes than previously anticipated.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Comput Biol
                PLoS Comput. Biol
                plos
                ploscomp
                PLoS Computational Biology
                Public Library of Science (San Francisco, USA )
                1553-734X
                1553-7358
                April 2014
                17 April 2014
                : 10
                : 4
                : e1003545
                Affiliations
                [1 ]Department of Computer Science, University of Georgia, Athens, Georgia, United States of America
                [2 ]Department of Dermatology, University of California San Francisco, San Francisco, California, United States of America
                [3 ]Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, United States of America
                [4 ]Institute of Bioinformatics, University of Georgia, Athens, Georgia, United States of America
                Indiana University, United States of America
                Author notes

                The authors have declared that no competing interests exist.

                Conceived and designed the experiments: MCU ET SK KR NK. Performed the experiments: MCU ET SK. Analyzed the data: MCU ET SK KR NK. Wrote the paper: MCU ET SK KR NK.

                Article
                PCOMPBIOL-D-13-00883
                10.1371/journal.pcbi.1003545
                3990476
                24743239
                897ea167-d0b0-4952-8633-8eff0d575fee
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 21 May 2013
                : 18 February 2014
                Page count
                Pages: 12
                Funding
                This work was supported in part by grants to NK from the American Cancer Society (RSG-10-188-01-TBE) and the Georgia Cancer Coalition. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Cell Biology
                Signal Transduction
                Cell Signaling
                Signaling Cascades
                Protein Kinase Signaling Cascade
                Tyrosine Kinase Signaling Cascade
                Oncogenic Signaling
                Molecular Cell Biology
                Molecular Biology
                Molecular Biology Techniques
                Sequencing Techniques
                Sequence Analysis
                Biochemistry
                Computational Biology
                Genetics
                Cancer Genetics

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article