34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Determinants of thromboxane biosynthesis in rheumatoid arthritis: Role of RAGE and oxidant stress

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Thromboxane (TX) biosynthesis by platelets and other cells in response to inflammatory triggers may provide a link between chronic inflammatory disease and atherothrombosis in rheumatoid arthritis (RA). In this study, we investigated the determinants of TX biosynthesis in RA, with particular reference to enhanced oxidative stress, receptor for advanced glycation end-products (RAGE) hyperactivity, and anti-tumor necrosis factor (TNF) treatment. Fifty-four patients with RA and 20 healthy subjects were recruited and a cross-sectional comparison of urinary 11-dehydro-TXB(2), 8-iso-PGF(2alpha), and plasma endogenous secretory RAGE (esRAGE) levels was performed between patients and controls. Urinary 11-dehydro-TXB(2) was significantly higher in RA patients than in healthy controls [425 (309-592) vs 233 (158-327) pg/mg creatinine, P<0.0001]. Furthermore, urinary 8-iso-PGF(2alpha) [323 (221-515) vs 172 (91-292) pg/mg creatinine, P<0.0001] and plasma esRAGE [155 (100-240) vs 377 (195-486) pg/ml, P=0.001] were higher and lower, respectively, in patients than in controls. A direct correlation was found between urinary 11-dehydro-TXB(2) and 8-iso-PGF(2alpha) only in patients not on anti-TNF therapy (r=0.420, P=0.021). Conversely, patients on anti-TNF therapy showed significantly lower urinary 8-iso-PGF(2alpha) [284 (201-373) vs 404 (241-539) pg/mg creatinine, P=0.043] but not 11-dehydro-TXB(2) than anti-TNF-treated subjects, with esRAGE as the only independent predictor of 11-dehydro-TXB(2) in this group of patients (adjusted R(2)=0.496, beta=-0.725, SEM=0.025, P=0.001). In conclusion, we provide biochemical evidence of enhanced TX biosynthesis in patients with RA, driven, at least in part, by lipid peroxidation. Treatment with anti-TNF agents may blunt isoprostane generation in the absence of significant effects on TX biosynthesis. We suggest that RAGE hyperactivity may escape TNF blockade, thus contributing to persistent TX biosynthesis in this setting. Copyright 2010 Elsevier Inc. All rights reserved.

          Related collections

          Author and article information

          Journal
          Free Radical Biology and Medicine
          Free Radical Biology and Medicine
          Elsevier BV
          08915849
          September 01 2010
          September 01 2010
          : 49
          : 5
          : 857-864
          Article
          10.1016/j.freeradbiomed.2010.06.009
          20541603
          89801ee4-801f-4eef-9091-483676524849
          © 2010

          https://www.elsevier.com/tdm/userlicense/1.0/

          History

          Comments

          Comment on this article