5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Discovery of macrocyclic inhibitors of Apurinic/apyrimidinic endonuclease 1

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Apurinic/apyrimidinic endonuclease 1 (APE1) is an essential base excision repair enzyme that is upregulated in a number of cancers, contributes to resistance of tumors treated with DNA-alkylating or–oxidizing agents, and has recently been identified as an important therapeutic target. In this work, we identified hot spots for binding of small organic molecules experimentally in high resolution crystal structures of APE1 and computationally through the use of FTMAP analysis ( http://ftmap.bu.edu/ ). Guided by these hot spots, a library of drug-like macrocycles was docked and then screened for inhibition of APE1 endonuclease activity. In an iterative process, hot-spot-guided docking, characterization of inhibition of APE1 endonuclease, and cytotoxicity of cancer cells were used to design next generation macrocycles. To assess target selectivity in cells, selected macrocycles were analyzed for modulation of DNA damage. Taken together, our studies suggest that macrocycles represent a promising class of compounds for inhibition of APE1 in cancer cells.

          Related collections

          Author and article information

          Journal
          Journal of Medicinal Chemistry
          J. Med. Chem.
          American Chemical Society (ACS)
          0022-2623
          1520-4804
          January 17 2019
          January 17 2019
          Article
          10.1021/acs.jmedchem.8b01529
          6583781
          30653918
          8987ad69-0bfc-49de-a112-39381a90bc9d
          © 2019
          History

          Comments

          Comment on this article