30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Standardizing the Analysis of Physical Activity in Patients With COPD Following a Pulmonary Rehabilitation Program

      research-article
      , PT, MSc, , PhD, PT, , PhD, PT, , PT, MSc, , PhD, PT, , MD, PhD, , PhD, PT, , MD, PhD, , PhD, PT
      Chest
      American College of Chest Physicians

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          BACKGROUND:

          There is a wide variability in measurement methodology of physical activity. This study investigated the effect of different analysis techniques on the statistical power of physical activity outcomes after pulmonary rehabilitation.

          METHODS:

          Physical activity was measured with an activity monitor armband in 57 patients with COPD (mean ± SD age, 66 ± 7 years; FEV 1, 46 ± 17% predicted) before and after 3 months of pulmonary rehabilitation. The choice of the outcome (daily number of steps [STEPS], time spent in at least moderate physical activity [TMA], mean metabolic equivalents of task level [METS], and activity time [ACT]), impact of weekends, number of days of assessment, postprocessing techniques, and influence of duration of daylight time (DT) on the sample size to achieve a power of 0.8 were investigated.

          RESULTS:

          The STEPS and ACT (1.6-2.3 metabolic equivalents of task) were the most sensitive outcomes. Excluding weekends decreased the sample size for STEPS (83 vs 56), TMA (160 vs 148), and METS (251 vs 207). Using 4 weekdays (STEPS and TMA) or 5 weekdays (METS) rendered the lowest sample size. Excluding days with < 8 h wearing time reduced the sample size for STEPS (56 vs 51). Differences in DT were an important confounder.

          CONCLUSIONS:

          Changes in physical activity following pulmonary rehabilitation are best measured for 4 weekdays, including only days with at least 8 h of wearing time (during waking hours) and considering the difference in DT as a covariate in the analysis.

          TRIAL REGISTRY:

          ClinicalTrials.gov; No.: NCT00948623; URL: www.clinicaltrials.gov

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Characteristics of physical activities in daily life in chronic obstructive pulmonary disease.

          Quantification of physical activities in daily life in patients with chronic obstructive pulmonary disease has increasing clinical interest. However, detailed comparison with healthy subjects is not available. Furthermore, it is unknown whether time spent actively during daily life is related to lung function, muscle force, or maximal and functional exercise capacity. We assessed physical activities and movement intensity with the DynaPort activity monitor in 50 patients (age 64 +/- 7 years; FEV1 43 +/- 18% predicted) and 25 healthy elderly individuals (age 66 +/- 5 years). Patients showed lower walking time (44 +/- 26 vs. 81 +/- 26 minutes/day), standing time (191 +/- 99 vs. 295 +/- 109 minutes/day), and movement intensity during walking (1.8 +/- 0.3 vs. 2.4 +/- 0.5 m/second2; p < 0.0001 for all), as well as higher sitting time (374 +/- 139 vs. 306 +/- 108 minutes/day; p = 0.04) and lying time (87 +/- 97 vs. 29 +/- 33 minutes/day; p = 0.004). Walking time was highly correlated with the 6-minute walking test (r = 0.76, p < 0.0001) and more modestly to maximal exercise capacity, lung function, and muscle force (0.28 < r < 0.64, p < 0.05). Patients with chronic obstructive pulmonary disease are markedly inactive in daily life. Functional exercise capacity is the strongest correlate of physical activities in daily life.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Methods of Measurement in epidemiology: sedentary Behaviour.

            Research examining sedentary behaviour as a potentially independent risk factor for chronic disease morbidity and mortality has expanded rapidly in recent years. We present a narrative overview of the sedentary behaviour measurement literature. Subjective and objective methods of measuring sedentary behaviour suitable for use in population-based research with children and adults are examined. The validity and reliability of each method is considered, gaps in the literature specific to each method identified and potential future directions discussed. To date, subjective approaches to sedentary behaviour measurement, e.g. questionnaires, have focused predominantly on TV viewing or other screen-based behaviours. Typically, such measures demonstrate moderate reliability but slight to moderate validity. Accelerometry is increasingly being used for sedentary behaviour assessments; this approach overcomes some of the limitations of subjective methods, but detection of specific postures and postural changes by this method is somewhat limited. Instruments developed specifically for the assessment of body posture have demonstrated good reliability and validity in the limited research conducted to date. Miniaturization of monitoring devices, interoperability between measurement and communication technologies and advanced analytical approaches are potential avenues for future developments in this field. High-quality measurement is essential in all elements of sedentary behaviour epidemiology, from determining associations with health outcomes to the development and evaluation of behaviour change interventions. Sedentary behaviour measurement remains relatively under-developed, although new instruments, both objective and subjective, show considerable promise and warrant further testing.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Physical activity in patients with COPD.

              The present study aimed to measure physical activity in patients with chronic obstructive pulmonary disease (COPD) to: 1) identify the disease stage at which physical activity becomes limited; 2) investigate the relationship of clinical characteristics with physical activity; 3) evaluate the predictive power of clinical characteristics identifying very inactive patients; and 4) analyse the reliability of physical activity measurements. In total, 163 patients with COPD (Global Initiative for Chronic Obstructive Lung Disease (GOLD) stage I-IV; BODE (body mass index, airway obstruction, dyspnoea, exercise capacity) index score 0-10) and 29 patients with chronic bronchitis (normal spirometry; former GOLD stage 0) wore activity monitors that recorded steps per day, minutes of at least moderate activity, and physical activity levels for 5 days (3 weekdays plus Saturday and Sunday). Compared with patients with chronic bronchitis, steps per day, minutes of at least moderate activity and physical activity levels were reduced from GOLD stage II/BODE score 1, GOLD stage III/BODE score 3/4 and from GOLD stage III/BODE score 1, respectively. Reliability of physical activity measurements improved with the number of measured days and with higher GOLD stages. Moderate relationships were observed between clinical characteristics and physical activity. GOLD stages III and IV best predicted very inactive patients. Physical activity is reduced in patients with chronic obstructive pulmonary disease from Global Initiative for Chronic Obstructive Lung Disease stage II/ body mass index, airway obstruction, dyspnoea, exercise capacity score 1. Clinical characteristics of patients with chronic obstructive pulmonary disease only incompletely reflect their physical activity.
                Bookmark

                Author and article information

                Journal
                Chest
                Chest
                chest
                Chest
                Chest
                American College of Chest Physicians
                0012-3692
                1931-3543
                August 2014
                06 March 2014
                06 March 2014
                : 146
                : 2
                : 318-327
                Affiliations
                [1]From the Faculty of Kinesiology and Rehabilitation Sciences (Mss Demeyer and Hornikx and Drs Burtin, Van Remoortel, Langer, Gosselink, and Troosters), Department of Rehabilitation Sciences, KU Leuven, Leuven, Belgium; Respiratory Rehabilitation and Respiratory Division (Mss Demeyer and Hornikx and Drs Burtin, Van Remoortel, Langer, Decramer, Gosselink, Janssens, and Troosters), University Hospital Leuven, Leuven, Belgium; and Department of Allied Health Professions (Dr Burtin), Fontys University of Applied Sciences, Eindhoven, The Netherlands.
                Author notes
                CORRESPONDENCE TO: Thierry Troosters, PhD, PT, Respiratory Rehabilitation and Respiratory Division, UZ Gasthuisberg, Herestraat 49 bus 706, Onderwijs & Navorsing I, Labo Pneumologie, B-3000 Leuven, Belgium; e-mail: thierry.troosters@ 123456med.kuleuven.be
                Article
                chest.13-1968
                10.1378/chest.13-1968
                4122275
                24603844
                8988e122-3386-495f-8e33-a5fb50648d7c
                © 2014 AMERICAN COLLEGE OF CHEST PHYSICIANS

                This is an open access article distributed under the terms of the Creative Commons Attribution-Noncommercial License ( http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted use, distribution, and reproduction to noncommercial entities, provided the original work is properly cited. Information for reuse by commercial entities is available online.

                History
                : 21 August 2013
                : 1 February 2014
                Categories
                Original Research
                COPD

                Respiratory medicine
                Respiratory medicine

                Comments

                Comment on this article