85
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mesenchymal stem/stromal cells as a delivery platform in cell and gene therapies

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Regenerative medicine relying on cell and gene therapies is one of the most promising approaches to repair tissues. Multipotent mesenchymal stem/stromal cells (MSC), a population of progenitors committing into mesoderm lineages, are progressively demonstrating therapeutic capabilities far beyond their differentiation capacities. The mechanisms by which MSC exert these actions include the release of biomolecules with anti-inflammatory, immunomodulating, anti-fibrogenic, and trophic functions. While we expect the spectra of these molecules with a therapeutic profile to progressively expand, several human pathological conditions have begun to benefit from these biomolecule-delivering properties. In addition, MSC have also been proposed to vehicle genes capable of further empowering these functions. This review deals with the therapeutic properties of MSC, focusing on their ability to secrete naturally produced or gene-induced factors that can be used in the treatment of kidney, lung, heart, liver, pancreas, nervous system, and skeletal diseases. We specifically focus on the different modalities by which MSC can exert these functions. We aim to provide an updated understanding of these paracrine mechanisms as a prerequisite to broadening the therapeutic potential and clinical impact of MSC.

          Electronic supplementary material

          The online version of this article (doi:10.1186/s12916-015-0426-0) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references139

          • Record: found
          • Abstract: found
          • Article: not found

          Autologous mesenchymal stem cell transplantation in stroke patients.

          Mesenchymal stem cell (MSC) transplantation improves recovery from ischemic stroke in animals. We examined the feasibility, efficacy, and safety of cell therapy using culture-expanded autologous MSCs in patients with ischemic stroke. We prospectively and randomly allocated 30 patients with cerebral infarcts within the middle cerebral arterial territory and with severe neurological deficits into one of two treatment groups: the MSC group (n = 5) received intravenous infusion of 1 x 10(8) autologous MSCs, whereas the control group (n = 25) did not receive MSCs. Changes in neurological deficits and improvements in function were compared between the groups for 1 year after symptom onset. Neuroimaging was performed serially in five patients from each group. Outcomes improved in MSC-treated patients compared with the control patients: the Barthel index (p = 0.011, 0.017, and 0.115 at 3, 6, and 12 months, respectively) and modified Rankin score (p = 0.076, 0.171, and 0.286 at 3, 6, and 12 months, respectively) of the MSC group improved consistently during the follow-up period. Serial evaluations showed no adverse cell-related, serological, or imaging-defined effects. In patients with severe cerebral infarcts, the intravenous infusion of autologous MSCs appears to be a feasible and safe therapy that may improve functional recovery.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo.

            Mesenchymal stem cells (MSCs), multipotential cells that reside within the bone marrow, can be induced to differentiate into various components of the marrow microenvironment, such as bone, adipose, and stromal tissues. The bone marrow microenvironment is vital to the development, differentiation, and regulation of the lymphohematopoietic system. We hypothesized that the activities of MSCs in the bone marrow microenvironment might also include immunomodulatory effects on lymphocytes. Baboon MSCs were tested in vitro for their ability to elicit a proliferative response from allogeneic lymphocytes, to inhibit an ongoing allogeneic response, and to inhibit a proliferative response to potent T-cell mitogens. In vivo effects were tested by intravenous administration of donor MSCs to MHC-mismatched recipient baboons prior to placement of autologous, donor, and third-party skin grafts. MSCs failed to elicit a proliferative response from allogeneic lymphocytes. MSCs added into a mixed lymphocyte reaction, either on day 0 or on day 3, or to mitogen-stimulated lymphocytes, led to a greater than 50% reduction in proliferative activity. This effect could be maximized by escalating the dose of MSCs and could be reduced with the addition of exogenous IL-2. In vivo administration of MSCs led to prolonged skin graft survival when compared to control animals: 11.3 +/- 0.3 vs 7 +/- 0. Baboon MSCs have been observed to alter lymphocyte reactivity to allogeneic target cells and tissues. These immunoregulatory features may prove useful in future applications of tissue regeneration and stem cell engineering.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Novel regulators of bone formation: molecular clones and activities.

              Protein extracts derived from bone can initiate the process that begins with cartilage formation and ends in de novo bone formation. The critical components of this extract, termed bone morphogenetic protein (BMP), that direct cartilage and bone formation as well as the constitutive elements supplied by the animal during this process have long remained unclear. Amino acid sequence has been derived from a highly purified preparation of BMP from bovine bone. Now, human complementary DNA clones corresponding to three polypeptides present in this BMP preparation have been isolated, and expression of the recombinant human proteins have been obtained. Each of the three (BMP-1, BMP-2A, and BMP-3) appears to be independently capable of inducing the formation of cartilage in vivo. Two of the encoded proteins (BMP-2A and BMP-3) are new members of the TGF-beta supergene family, while the third, BMP-1, appears to be a novel regulatory molecule.
                Bookmark

                Author and article information

                Contributors
                +39-059-422-2858 , massimo.dominici@unimore.it , http://www.cell-therapy.unimore.it
                Journal
                BMC Med
                BMC Med
                BMC Medicine
                BioMed Central (London )
                1741-7015
                12 August 2015
                12 August 2015
                2015
                : 13
                : 186
                Affiliations
                [ ]Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Via del Pozzo 71, 41124 Modena, Italy
                [ ]The Division of Hematology/Oncology/BMT, Nationwide Children’s Hospital, Departments of Pediatrics and Medicine, The Ohio State University College of Medicine, Columbus, Ohio USA
                Article
                426
                10.1186/s12916-015-0426-0
                4534031
                26265166
                898be41f-0f9f-48a4-8094-15555b13d50f
                © D’Souza et al. 2015

                Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 23 March 2015
                : 17 July 2015
                Categories
                Review
                Custom metadata
                © The Author(s) 2015

                Medicine
                differentiation,gene therapy,microvesicles,msc,secretion
                Medicine
                differentiation, gene therapy, microvesicles, msc, secretion

                Comments

                Comment on this article