10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Evaluation of sample preparation methods for mass spectrometry-based proteomic analysis of barley leaves

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Sample preparation is a critical process for proteomic studies. Many efficient and reproducible sample preparation methods have been developed for mass spectrometry-based proteomic analysis of human and animal tissues or cells, but no attempt has been made to evaluate these protocols for plants. We here present an LC–MS/MS-based proteomics study of barley leaf aimed at optimization of methods to achieve efficient and unbiased trypsin digestion of proteins prior to LC–MS/MS based sequencing and quantification of peptides. We evaluated two spin filter-aided sample preparation protocols using either sodium dodecyl-sulphate or sodium deoxycholate (SDC), and three in-solution digestion (ISD) protocols using SDC or trichloroacetic acid/acetone precipitation.

          Results

          The proteomics workflow identified and quantified up to 1800 barley proteins based on sequencing of up to 6900 peptides per sample. The two spin filter-based protocols provided a 12–38% higher efficiency than the ISD protocols, including more proteins of low abundance. Among the ISD protocols, a simple one-step reduction and S-alkylation method (OP-ISD) was the most efficient for barley leaf sample preparation; it identified and quantified 1500 proteins and displayed higher peptide-to-protein inference ratio and higher average amino acid sequence coverage of proteins. The two spin filter-aided sample preparation protocols are compatible with TMT labelling for quantitative proteomics studies. They exhibited complementary performance as about 30% of the proteins were identified by either one or the other protocol, but also demonstrated a positive bias for membrane proteins when using SDC as detergent.

          Conclusions

          We provide detailed protocols for efficient plant protein sample preparation for LC–MS/MS-based proteomics studies. Spin filter-based protocols are the most efficient for the preparation of leaf samples for MS-based proteomics. However, a simple protocol provides comparable results although with different peptide digestion profile.

          Electronic supplementary material

          The online version of this article (10.1186/s13007-018-0341-4) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references26

          • Record: found
          • Abstract: found
          • Article: not found

          Proteomics by mass spectrometry: approaches, advances, and applications.

          Mass spectrometry (MS) is the most comprehensive and versatile tool in large-scale proteomics. In this review, we dissect the overall framework of the MS experiment into its key components. We discuss the fundamentals of proteomic analyses as well as recent developments in the areas of separation methods, instrumentation, and overall experimental design. We highlight both the inherent strengths and limitations of protein MS and offer a rough guide for selecting an experimental design based on the goals of the analysis. We emphasize the versatility of the Orbitrap, a novel mass analyzer that features high resolution (up to 150,000), high mass accuracy (2-5 ppm), a mass-to-charge range of 6000, and a dynamic range greater than 10(3). High mass accuracy of the Orbitrap expands the arsenal of the data acquisition and analysis approaches compared with a low-resolution instrument. We discuss various chromatographic techniques, including multidimensional separation and ultra-performance liquid chromatography. Multidimensional protein identification technology (MudPIT) involves a continuum sample preparation, orthogonal separations, and MS and software solutions. We discuss several aspects of MudPIT applications to quantitative phosphoproteomics. MudPIT application to large-scale analysis of phosphoproteins includes (a) a fractionation procedure for motif-specific enrichment of phosphopeptides, (b) development of informatics tools for interrogation and validation of shotgun phosphopeptide data, and (c) in-depth data analysis for simultaneous determination of protein expression and phosphorylation levels, analog to western blot measurements. We illustrate MudPIT application to quantitative phosphoproteomics of the beta adrenergic pathway. We discuss several biological discoveries made via mass spectrometry pipelines with a focus on cell signaling proteomics.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Sample extraction techniques for enhanced proteomic analysis of plant tissues.

            Major improvements in proteomic techniques in recent years have led to an increase in their application in all biological fields, including plant sciences. For all proteomic approaches, protein extraction and sample preparation are of utmost importance for optimal results; however, extraction of proteins from plant tissues represents a great challenge. Plant tissues usually contain relatively low amounts of proteins and high concentrations of proteases and compounds that potentially can limit tissue disintegration and interfere with subsequent protein separation and identification. An effective protein extraction protocol must also be adaptable to the great variation in the sets of secondary metabolites and potentially contaminating compounds that occurs between tissues (e.g., leaves, roots, fruit, seeds and stems) and between species. Here we present two basic protein extraction protocols that have successfully been used with diverse plant tissues, including recalcitrant tissues. The first method is based on phenol extraction coupled with ammonium acetate precipitation, and the second is based on trichloroacetic acid (TCA) precipitation. Both extraction protocols can be completed within 2 d.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Quantitative Phosphoproteomics of the Ataxia Telangiectasia-Mutated (ATM) and Ataxia Telangiectasia-Mutated and Rad3-related (ATR) Dependent DNA Damage Response in Arabidopsis thaliana*

              The reversible phosphorylation of proteins on serine, threonine, and tyrosine residues is an important biological regulatory mechanism. In the context of genome integrity, signaling cascades driven by phosphorylation are crucial for the coordination and regulation of DNA repair. The two serine/threonine protein kinases ataxia telangiectasia-mutated (ATM) and Ataxia telangiectasia-mutated and Rad3-related (ATR) are key factors in this process, each specific for different kinds of DNA lesions. They are conserved across eukaryotes, mediating the activation of cell-cycle checkpoints, chromatin modifications, and regulation of DNA repair proteins. We designed a novel mass spectrometry-based phosphoproteomics approach to study DNA damage repair in Arabidopsis thaliana. The protocol combines filter aided sample preparation, immobilized metal affinity chromatography, metal oxide affinity chromatography, and strong cation exchange chromatography for phosphopeptide generation, enrichment, and separation. Isobaric labeling employing iTRAQ (isobaric tags for relative and absolute quantitation) was used for profiling the phosphoproteome of atm atr double mutants and wild type plants under either regular growth conditions or challenged by irradiation. A total of 10,831 proteins were identified and 15,445 unique phosphopeptides were quantified, containing 134 up- and 38 down-regulated ATM/ATR dependent phosphopeptides. We identified known and novel ATM/ATR targets such as LIG4 and MRE11 (needed for resistance against ionizing radiation), PIE1 and SDG26 (implicated in chromatin remodeling), PCNA1, WAPL, and PDS5 (implicated in DNA replication), and ASK1 and HTA10 (involved in meiosis).
                Bookmark

                Author and article information

                Contributors
                wwq0814@ibcas.ac.cn
                jenseno@bmb.sdu.dk
                ian.max.moller@mbg.au.dk
                kim.hebelstrup@mbg.au.dk
                adelinar@bmb.sdu.dk
                Journal
                Plant Methods
                Plant Methods
                Plant Methods
                BioMed Central (London )
                1746-4811
                25 August 2018
                25 August 2018
                2018
                : 14
                : 72
                Affiliations
                [1 ]ISNI 0000 0001 0728 0170, GRID grid.10825.3e, Department of Biochemistry and Molecular Biology and VILLUM Center for Bioanalytical Sciences, , University of Southern Denmark, ; Campusvej 55, 5230 Odense M, Denmark
                [2 ]ISNI 0000 0001 1956 2722, GRID grid.7048.b, Department of Molecular Biology and Genetics, , Aarhus University, ; Flakkebjerg, 4200 Slagelse, Denmark
                [3 ]ISNI 0000000119573309, GRID grid.9227.e, Key Laboratory of Plant Molecular Physiology, Institute of Botany, , Chinese Academy of Sciences, ; Beijing, 100093 China
                Author information
                http://orcid.org/0000-0003-0174-9905
                Article
                341
                10.1186/s13007-018-0341-4
                6109330
                8992581c-ba34-444e-83f1-5b8e677f2d4c
                © The Author(s) 2018

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 17 February 2018
                : 16 August 2018
                Funding
                Funded by: National Natural Sciences Foundation of China
                Award ID: 31400292
                Award Recipient :
                Funded by: FundRef http://dx.doi.org/10.13039/501100004543, China Scholarship Council;
                Funded by: Danish Council for Independent Research – Technology and Production
                Categories
                Research
                Custom metadata
                © The Author(s) 2018

                Plant science & Botany
                barley,hordeum vulgare,in solution digestion,mass spectrometry,sodium deoxycholate,sample preparation

                Comments

                Comment on this article