+1 Recommend
1 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Electroacupuncture Alleviates Spared Nerve Injury-Induced Neuropathic Pain And Modulates HMGB1/NF-κB Signaling Pathway In The Spinal Cord

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.



          Neuropathic pain with complications greatly affects patients worldwide. High mobility group box 1 (HMGB1) has been shown to contribute to the pathogenesis of neuropathic pain; thus, suppression of HMGB1 may provide a novel therapeutic option for neuropathic pain. Electroacupuncture (EA) has been indicated to be effective in attenuating neuropathic pain, but the underlying mechanism remains to be fully clarified. We aim to explore whether 2Hz EA stimulation regulates the spinal HMGB1/NF-κB signaling in neuropathic pain induced by spared nerve injury (SNI).

          Materials and methods

          Paw withdrawal threshold and CatWalk gait analysis were used to assess the effect of 2Hz EA on pain-related behaviors in SNI rats. Administration of 2Hz EA to SNI rats once every other day lasting for 21 days. Expression of spinal protein molecules were detected using Western blot and immunofluorescence staining.


          It was found that SNI significantly induced mechanical hypersensitivity and decrease of gait parameters, and subsequently increased the levels of HMGB1, TLR4, MyD88, and NF-κB p65 protein expression. 2Hz EA stimulation led to remarkable attenuation of mechanical hypersensitivity, upregulation of spinal HMGB1, TLR4, MyD88, and NF-κB p65 protein expressions induced by SNI, and significant improvement in gait parameters. Furthermore, immunofluorescence staining also confirmed that 2Hz EA obviously suppressed the co-expression of microglia activation marker CD11b and TLR4 or MyD88, as well as the activation of NF-κB p65 in SNI rats.


          This study suggested that blockade of HMGB1/NF-κB signaling in the spinal cord may be a promising therapeutic approach for 2Hz EA management of SNI-induced neuropathic pain.

          Related collections

          Most cited references 35

          • Record: found
          • Abstract: found
          • Article: not found

          MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways.

          The Toll-mediated signaling cascade using the NF-kappaB pathway has been shown to be essential for immune responses in adult Drosophila, and we recently reported that a human homolog of the Drosophila Toll protein induces various immune response genes via this pathway. We now demonstrate that signaling by the human Toll receptor employs an adaptor protein, MyD88, and induces activation of NF-kappaB via the Pelle-like kinase IRAK and the TRAF6 protein, similar to IL-1R-mediated NF-kappaB activation. However, we find that Toll and IL-1R signaling pathways are not identical with respect to AP-1 activation. Finally, our findings implicate MyD88 as a general adaptor/regulator molecule for the Toll/IL-1R family of receptors for innate immunity.
            • Record: found
            • Abstract: found
            • Article: not found

            Activation of innate immunity in the CNS triggers neurodegeneration through a Toll-like receptor 4-dependent pathway.

            Innate immunity is an evolutionarily ancient system that provides organisms with immediately available defense mechanisms through recognition of pathogen-associated molecular patterns. We show that in the CNS, specific activation of innate immunity through a Toll-like receptor 4 (TLR4)-dependent pathway leads to neurodegeneration. We identify microglia as the major lipopolysaccharide (LPS)-responsive cell in the CNS. TLR4 activation leads to extensive neuronal death in vitro that depends on the presence of microglia. LPS leads to dramatic neuronal loss in cultures prepared from wild-type mice but does not induce neuronal injury in CNS cultures derived from tlr4 mutant mice. In an in vivo model of neurodegeneration, stimulating the innate immune response with LPS converts a subthreshold hypoxic-ischemic insult from no discernable neuronal injury to severe axonal and neuronal loss. In contrast, animals bearing a loss-of-function mutation in the tlr4 gene are resistant to neuronal injury in the same model. The present study demonstrates a mechanistic link among innate immunity, TLRs, and neurodegeneration.
              • Record: found
              • Abstract: found
              • Article: not found

              Pathological pain and the neuroimmune interface.

              Reciprocal signalling between immunocompetent cells in the central nervous system (CNS) has emerged as a key phenomenon underpinning pathological and chronic pain mechanisms. Neuronal excitability can be powerfully enhanced both by classical neurotransmitters derived from neurons, and by immune mediators released from CNS-resident microglia and astrocytes, and from infiltrating cells such as T cells. In this Review, we discuss the current understanding of the contribution of central immune mechanisms to pathological pain, and how the heterogeneous immune functions of different cells in the CNS could be harnessed to develop new therapeutics for pain control. Given the prevalence of chronic pain and the incomplete efficacy of current drugs--which focus on suppressing aberrant neuronal activity--new strategies to manipulate neuroimmune pain transmission hold considerable promise.

                Author and article information

                J Pain Res
                J Pain Res
                Journal of Pain Research
                16 October 2019
                : 12
                : 2851-2863
                [1 ]Department of Physiology, Gannan Medical University , Ganzhou 341000, People’s Republic of China
                [2 ]Pain Medicine Research Institute, Gannan Medical University , Ganzhou 341000, People’s Republic of China
                Author notes
                Correspondence: Cheng Huang; Zhi-hua Huang Department of Physiology, Gannan Medical University , Ganzhou341000, People’s Republic of China Email huangc6a2013@163.com; 18970786003@163.com
                © 2019 Xia et al.

                This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms ( https://www.dovepress.com/terms.php).

                Page count
                Figures: 7, References: 41, Pages: 13
                Original Research


                Comment on this article