93
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Habenular α5* nicotinic receptor signaling controls nicotine intake

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Genetic variation in CHRNA5, the gene encoding the α5 nicotinic acetylcholine receptor (nAChR) subunit, increases vulnerability to tobacco addiction and lung cancer, but underlying mechanisms are unknown. Here, we report dramatically increased nicotine consumption in mice with null mutation in Chrna5. This effect was `rescued' in knockout mice by re-expressing α5 subunits in medial habenula (MHb), and recapitulated in rats through α5 subunit knockdown in MHb. Remarkably, α5 subunit knockdown in MHb did not alter the rewarding effects of nicotine but abolished the inhibitory effects of higher nicotine doses on brain reward systems. The MHb extends projections almost exclusively to the interpeduncular nucleus (IPN). We found diminished IPN activation in response to nicotine in α5 knockout mice and disruption of IPN signaling increased nicotine intake in rats. Our findings suggest that nicotine activates the habenulo-interpeduncular pathway through α5-containing nAChRs, triggering an inhibitory motivational signal that acts to limit nicotine intake.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          Genome-wide association scan of tag SNPs identifies a susceptibility locus for lung cancer at 15q25.1.

          To identify risk variants for lung cancer, we conducted a multistage genome-wide association study. In the discovery phase, we analyzed 315,450 tagging SNPs in 1,154 current and former (ever) smoking cases of European ancestry and 1,137 frequency-matched, ever-smoking controls from Houston, Texas. For replication, we evaluated the ten SNPs most significantly associated with lung cancer in an additional 711 cases and 632 controls from Texas and 2,013 cases and 3,062 controls from the UK. Two SNPs, rs1051730 and rs8034191, mapping to a region of strong linkage disequilibrium within 15q25.1 containing PSMA4 and the nicotinic acetylcholine receptor subunit genes CHRNA3 and CHRNA5, were significantly associated with risk in both replication sets. Combined analysis yielded odds ratios of 1.32 (P < 1 x 10(-17)) for both SNPs. Haplotype analysis was consistent with there being a single risk variant in this region. We conclude that variation in a region of 15q25.1 containing nicotinic acetylcholine receptors genes contributes to lung cancer risk.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25.

            Lung cancer is the most common cause of cancer death worldwide, with over one million cases annually. To identify genetic factors that modify disease risk, we conducted a genome-wide association study by analysing 317,139 single-nucleotide polymorphisms in 1,989 lung cancer cases and 2,625 controls from six central European countries. We identified a locus in chromosome region 15q25 that was strongly associated with lung cancer (P = 9 x 10(-10)). This locus was replicated in five separate lung cancer studies comprising an additional 2,513 lung cancer cases and 4,752 controls (P = 5 x 10(-20) overall), and it was found to account for 14% (attributable risk) of lung cancer cases. Statistically similar risks were observed irrespective of smoking status or propensity to smoke tobacco. The association region contains several genes, including three that encode nicotinic acetylcholine receptor subunits (CHRNA5, CHRNA3 and CHRNB4). Such subunits are expressed in neurons and other tissues, in particular alveolar epithelial cells, pulmonary neuroendocrine cells and lung cancer cell lines, and they bind to N'-nitrosonornicotine and potential lung carcinogens. A non-synonymous variant of CHRNA5 that induces an amino acid substitution (D398N) at a highly conserved site in the second intracellular loop of the protein is among the markers with the strongest disease associations. Our results provide compelling evidence of a locus at 15q25 predisposing to lung cancer, and reinforce interest in nicotinic acetylcholine receptors as potential disease candidates and chemopreventative targets.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Guidelines on nicotine dose selection for in vivo research.

              This review provides insight for the judicious selection of nicotine dose ranges and routes of administration for in vivo studies. The literature is replete with reports in which a dosaging regimen chosen for a specific nicotine-mediated response was suboptimal for the species used. In many cases, such discrepancies could be attributed to the complex variables comprising species-specific in vivo responses to acute or chronic nicotine exposure. This review capitalizes on the authors' collective decades of in vivo nicotine experimentation to clarify the issues and to identify the variables to be considered in choosing a dosaging regimen. Nicotine dose ranges tolerated by humans and their animal models provide guidelines for experiments intended to extrapolate to human tobacco exposure through cigarette smoking or nicotine replacement therapies. Just as important are the nicotine dosaging regimens used to provide a mechanistic framework for acquisition of drug-taking behavior, dependence, tolerance, or withdrawal in animal models. Seven species are addressed: humans, nonhuman primates, rats, mice, Drosophila, Caenorhabditis elegans, and zebrafish. After an overview on nicotine metabolism, each section focuses on an individual species, addressing issues related to genetic background, age, acute vs chronic exposure, route of administration, and behavioral responses. The selected examples of successful dosaging ranges are provided, while emphasizing the necessity of empirically determined dose-response relationships based on the precise parameters and conditions inherent to a specific hypothesis. This review provides a new, experimentally based compilation of species-specific dose selection for studies on the in vivo effects of nicotine.
                Bookmark

                Author and article information

                Journal
                0410462
                6011
                Nature
                Nature
                0028-0836
                1476-4687
                11 January 2011
                30 January 2011
                31 March 2011
                30 September 2011
                : 471
                : 7340
                : 597-601
                Affiliations
                [1 ]Laboratory for Behavioral and Molecular Neuroscience, Department of Molecular Therapeutics, The Scripps Research Institute – Scripps Florida, Jupiter, FL 33458, USA
                [2 ]Institute of Behavioral Genetics, University of Colorado, Boulder, CO 80309, USA
                Author notes
                Correspondence and requests for materials should be addressed to P.J.K. ( pjkenny@ 123456scripps.edu ).
                Article
                nihpa263530
                10.1038/nature09797
                3079537
                21278726
                899d9ced-86aa-4077-95b3-4d49aa7a72ba

                Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Funding
                Funded by: National Institute on Drug Abuse : NIDA
                Award ID: R01 DA020686-05 ||DA
                Funded by: National Institute on Drug Abuse : NIDA
                Award ID: P30 DA015663-10 ||DA
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article