21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Involvement of TRPV4 in serotonin-evoked scratching

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Several thermo-sensitive TRP channels (TRPV1, -3; TRPA1) have been implicated in itch. In contrast, the role of transient receptor potential vanilloid type-4 (TRPV4) in itch is unknown. Therefore, we investigated if TRPV4, a temperature-sensitive cation channel, plays an important role in acute itch in mice. Four different pruritogens including serotonin (5-hydroxytrytamine, 5-HT), histamine, SLIGRL (PAR2/MrgprC11 agonist) and chloroquine (MrgprA3 agonist) were intradermally injected and itch-related scratching behavior was assessed. TRPV4 knockout (TRPV4KO) mice exhibited significantly fewer 5-HT-evoked scratching bouts compared to wild-type (WT) mice. Notably, no differences between TRPV4KO and WT mice were observed in the number of scratch bouts elicited by SLIGRL and histamine. Pretreatment with a TRPV4 antagonist significantly attenuated 5-HT-evoked scratching in vivo. Using calcium imaging in cultured primary murine dorsal root ganglion (DRG) neurons, the response of neurons after 5-HT application, but not other pruritogens, was significantly lower in TRPV4KO compared to WT mice. A TRPV4 antagonist significantly suppressed 5-HT-evoked responses in DRG cells from WT mice. Approximately 90% of 5-HT-sensitive DRG neurons were immunoreactive for an antibody to TRPV4, as assessed by calcium imaging. These results indicate that serotonin-induced itch is linked to TRPV4.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          The epithelial cell-derived atopic dermatitis cytokine TSLP activates neurons to induce itch.

          Atopic dermatitis (AD) is a chronic itch and inflammatory disorder of the skin that affects one in ten people. Patients suffering from severe AD eventually progress to develop asthma and allergic rhinitis, in a process known as the "atopic march." Signaling between epithelial cells and innate immune cells via the cytokine thymic stromal lymphopoietin (TSLP) is thought to drive AD and the atopic march. Here, we report that epithelial cells directly communicate to cutaneous sensory neurons via TSLP to promote itch. We identify the ORAI1/NFAT calcium signaling pathway as an essential regulator of TSLP release from keratinocytes, the primary epithelial cells of the skin. TSLP then acts directly on a subset of TRPA1-positive sensory neurons to trigger robust itch behaviors. Our results support a model whereby calcium-dependent TSLP release by keratinocytes activates both primary afferent neurons and immune cells to promote inflammatory responses in the skin and airways. Copyright © 2013 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A sensory neuron-expressed IL-31 receptor mediates T helper cell-dependent itch: Involvement of TRPV1 and TRPA1.

            Although the cytokine IL-31 has been implicated in inflammatory and lymphoma-associated itch, the cellular basis for its pruritic action is yet unclear. We sought to determine whether immune cell-derived IL-31 directly stimulates sensory neurons and to identify the molecular basis of IL-31-induced itch. We used immunohistochemistry and quantitative real-time PCR to determine IL-31 expression levels in mice and human subjects. Immunohistochemistry, immunofluorescence, quantitative real-time PCR, in vivo pharmacology, Western blotting, single-cell calcium imaging, and electrophysiology were used to examine the distribution, functionality, and cellular basis of the neuronal IL-31 receptor α in mice and human subjects. Among all immune and resident skin cells examined, IL-31 was predominantly produced by TH2 and, to a significantly lesser extent, mature dendritic cells. Cutaneous and intrathecal injections of IL-31 evoked intense itch, and its concentrations increased significantly in murine atopy-like dermatitis skin. Both human and mouse dorsal root ganglia neurons express IL-31RA, largely in neurons that coexpress transient receptor potential cation channel vanilloid subtype 1 (TRPV1). IL-31-induced itch was significantly reduced in TRPV1-deficient and transient receptor channel potential cation channel ankyrin subtype 1 (TRPA1)-deficient mice but not in c-kit or proteinase-activated receptor 2 mice. In cultured primary sensory neurons IL-31 triggered Ca(2+) release and extracellular signal-regulated kinase 1/2 phosphorylation, inhibition of which blocked IL-31 signaling in vitro and reduced IL-31-induced scratching in vivo. IL-31RA is a functional receptor expressed by a small subpopulation of IL-31RA(+)/TRPV1(+)/TRPA1(+) neurons and is a critical neuroimmune link between TH2 cells and sensory nerves for the generation of T cell-mediated itch. Thus targeting neuronal IL-31RA might be effective in the management of TH2-mediated itch, including atopic dermatitis and cutaneous T-cell lymphoma. Copyright © 2013 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A subpopulation of nociceptors specifically linked to itch

              Itch-specific neurons have been sought for decades. The existence of such neurons is in doubt recently due to the observation that itch-mediating neurons also respond to painful stimuli. Here, we genetically labeled and manipulated MrgprA3+ neurons in dorsal root ganglion (DRG) and found that they exclusively innervate the epidermis of the skin and respond to multiple pruritogens. Ablation of MrgprA3+ neurons led to significant reductions in scratching evoked by multiple pruritogens and occurring spontaneously under chronic itch conditions whereas pain sensitivity remained intact. Importantly, mice with TRPV1 exclusively expressed in MrgprA3+ neurons exhibited only itch- and not pain behavior in response to capsaicin. Although MrgprA3+ neurons are sensitive to noxious heat, activation of TRPV1 in these neurons by noxious heat did not alter pain behavior. These data suggest that MrgprA3 defines a specific subpopulation of DRG neurons mediating itch. Our study opens new avenues for studying itch and developing anti-pruritic therapies.
                Bookmark

                Author and article information

                Journal
                0426720
                4839
                J Invest Dermatol
                J. Invest. Dermatol.
                The Journal of investigative dermatology
                0022-202X
                1523-1747
                4 October 2015
                January 2016
                01 July 2016
                : 136
                : 1
                : 154-160
                Affiliations
                [1 ]University of California, Davis, Department of Neurobiology, Physiology and Behavior, 1 Shields Avenue, Davis, CA 95616, USA
                [2 ]Temple University, Department of Dermatology, Department of Anatomy & Cell Biology, Temple Itch Center, 3500 Broad St, Philadelphia, PA19140, USA
                [3 ]University of California, San Francisco, Departments of Dermatology and Surgery
                [4 ]U Dept. of Dermatology and UCD Charles Institute for Translational Dermatology, University College Dublin, Dublin, Ireland
                Author notes
                Corresponding Author: Tasuku Akiyama, PhD, Temple University, Departments of Dermatology and Anatomy & Cell Biology, and Temple Itch Center, 3500 Broad St, Philadelphia, PA19140, USA. Tel.: 1-215-707-9509, Fax: 1-215-707-9510, tasuku.akiyama@ 123456temple.edu

                Prof. E. Carstens, University of California, Davis, Department of Neurobiology, Physiology & Behavior, 1 Shields Avenue, Davis, California 95616, Tel.: 1-530-752-7767 (lab), Fax: 1-530-752-5582, eecarstens@ 123456ucdavis.edu

                Prof. Martin Steinhoff, U Dept. of Dermatology and UCD Charles Institute for Translational Dermatology, University College Dublin, Dublin, Ireland. Martin.steinhoff@ 123456ucd.ie

                Article
                NIHMS726905
                10.1038/JID.2015.388
                4731048
                26763435
                89bc7fda-8eb9-465d-8de3-4e038c62dcc5

                Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms

                History
                Categories
                Article

                Dermatology
                Dermatology

                Comments

                Comment on this article