4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Chlamydia trachomatis Growth and Cytokine mRNA Response in a Prostate Cancer Cell Line

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In the present paper, we report that C. trachomatis can be efficiently propagated and affect mRNA expression for two major cytokines, relevant to tumor progression, in CWR-R1 cells, a malignant prostate cell line. CWR-R1 and McCoy cells, a classic cell line for chlamydial research, were grown and infected with C. trachomatis under similar conditions. Cell monolayers were harvested for RNA analysis and immunostaining with major outer membrane protein (MOMP) antibody at 24, 48, and 72 hours of the postinfection (hpi) period. It was shown that the infectious cycle of chlamydial pathogen in CWR-R1 cells resembles the progression of C. trachomatis infection in McCoy cells but with a few important differences. First of all, the initial stage of C. trachomatis propagation in CWR-R1 cells (24 hpi) was characterized by larger inclusion bodies and more intense, specific immunofluorescent staining of infected cells as compared with McCoy cells. Moreover, there was a corresponding increase in infective progeny formation in CWR-R1 cells along with mRNA for EUO, a crucial gene controlling the early phase of the chlamydial development cycle (24 hpi). These changes were more minimal and became statistically insignificant at a later time point in the infectious cycle (48 hpi). Altogether, these data suggest that the early phase of C. trachomatis infection in CWR-R1 cells is accompanied by more efficient propagation of the pathogen as compared with the growth of C. trachomatis in McCoy cells. Furthermore, propagation of C. trachomatis in CWR-R1 cells leads to enhanced transcription of interleukin-6 and fibroblast growth factor-2, genes encoding two important proinflammatory cytokines implicated in the molecular mechanisms of chemoresistance of prostate cancer and its ability to metastasize. The possible roles of reactive oxygen species and impaired mitochondrial oxidation in the prostate cancer cell line are discussed as factors promoting the early stages of C. trachomatis growth in CWR-R1 cells.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Chlamydia cell biology and pathogenesis.

          Chlamydia spp. are important causes of human disease for which no effective vaccine exists. These obligate intracellular pathogens replicate in a specialized membrane compartment and use a large arsenal of secreted effectors to survive in the hostile intracellular environment of the host. In this Review, we summarize the progress in decoding the interactions between Chlamydia spp. and their hosts that has been made possible by recent technological advances in chlamydial proteomics and genetics. The field is now poised to decipher the molecular mechanisms that underlie the intimate interactions between Chlamydia spp. and their hosts, which will open up many exciting avenues of research for these medically important pathogens.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Glucose Metabolism in the Progression of Prostate Cancer

            Prostate cancer is one of the most common types of cancer in western country males but the mechanisms involved in the transformation processes have not been clearly elucidated. Alteration in cellular metabolism in cancer cells is recognized as a hallmark of malignant transformation, although it is becoming clear that the biological features of metabolic reprogramming not only differ in different cancers, but also among different cells in a type of cancer. Normal prostate epithelial cells have a peculiar and very inefficient energy metabolism as they use glucose to synthesize citrate that is secreted as part of the seminal liquid. During the transformation process, prostate cancer cells modify their energy metabolism from inefficient to highly efficient, often taking advantage of the interaction with other cell types in the tumor microenvironment that are corrupted to produce and secrete metabolic intermediates used by cancer cells in catabolic and anabolic processes. We recapitulate the metabolic transformations occurring in the prostate from the normal cell to the metastasis, highlighting the role of the microenvironment and summarizing what is known on the molecular mechanisms involved in the process.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Enhancement of reactive oxygen species production and chlamydial infection by the mitochondrial Nod-like family member NLRX1.

              Chlamydia trachomatis infections cause severe and irreversible damage that can lead to infertility and blindness in both males and females. Following infection of epithelial cells, Chlamydia induces production of reactive oxygen species (ROS). Unconventionally, Chlamydiae use ROS to their advantage by activating caspase-1, which contributes to chlamydial growth. NLRX1, a member of the Nod-like receptor family that translocates to the mitochondria, can augment ROS production from the mitochondria following Shigella flexneri infections. However, in general, ROS can also be produced by membrane-bound NADPH oxidases. Given the importance of ROS-induced caspase-1 activation in growth of the chlamydial vacuole, we investigated the sources of ROS production in epithelial cells following infection with C. trachomatis. In this study, we provide evidence that basal levels of ROS are generated during chlamydial infection by NADPH oxidase, but ROS levels, regardless of their source, are enhanced by an NLRX1-dependent mechanism. Significantly, the presence of NLRX1 is required for optimal chlamydial growth.
                Bookmark

                Author and article information

                Contributors
                Journal
                Adv Urol
                Adv Urol
                AU
                Advances in Urology
                Hindawi
                1687-6369
                1687-6377
                2019
                17 January 2019
                : 2019
                : 6287057
                Affiliations
                1Lycotec Ltd., Granta Park, Cambridge CB21 6GP, UK
                2Department of Medical Microbiology, Gamaleya National Research Center of Epidemiology and Microbiology, Ministry of Health, 18 Gamaleya Str, Moscow 123098, Russia
                Author notes

                Academic Editor: Kostis Gyftopoulos

                Author information
                http://orcid.org/0000-0001-8201-6863
                http://orcid.org/0000-0002-2265-3817
                Article
                10.1155/2019/6287057
                6360031
                89c20701-de34-4d07-88d6-97d2de6aa30d
                Copyright © 2019 Ivan M. Petyaev et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 16 August 2018
                : 27 November 2018
                : 25 December 2018
                Funding
                Funded by: Lycotec Ltd.
                Funded by: Gamaleya National Research Center of Epidemiology and Microbiology
                Categories
                Research Article

                Urology
                Urology

                Comments

                Comment on this article