6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Decoration of the enterococcal polysaccharide antigen EPA is essential for virulence, cell surface charge and interaction with effectors of the innate immune system

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Enterococcus faecalis is an opportunistic pathogen with an intrinsically high resistance to lysozyme, a key effector of the innate immune system. This high level of resistance requires a complex network of transcriptional regulators and several genes ( oatA, pgdA, dltA and sigV) acting synergistically to inhibit both the enzymatic and cationic antimicrobial peptide activities of lysozyme. We sought to identify novel genes modulating E. faecalis resistance to lysozyme. Random transposon mutagenesis carried out in the quadruple oatA/ pgdA/ dltA/ sigV mutant led to the identification of several independent insertions clustered on the chromosome. These mutations were located in a locus referred to as the enterococcal polysaccharide antigen (EPA) variable region located downstream of the highly conserved epaA-epaR genes proposed to encode a core synthetic machinery. The epa variable region was previously proposed to be responsible for EPA decorations, but the role of this locus remains largely unknown. Here, we show that EPA decoration contributes to resistance towards charged antimicrobials and underpins virulence in the zebrafish model of infection by conferring resistance to phagocytosis. Collectively, our results indicate that the production of the EPA rhamnopolysaccharide backbone is not sufficient to promote E. faecalis infections and reveal an essential role of the modification of this surface polymer for enterococcal pathogenesis.

          Author summary

          Enterococcus faecalis is a commensal bacterium colonizing the gastro-intestinal tract of humans. This organism can cause life-threatening opportunistic infections and represents a reservoir for the transmission of antibiotic resistance genes such as resistance to vancomycin. E. faecalis strains responsible for nosocomial infections are also found in healthy individuals and the virulence factors identified so far are not strictly associated with clinical isolates. The molecular basis underpinning E. faecalis infections therefore remains unclear. In this work, we identify several mutations clustered on the chromosome, which play a role in the resistance of E. faecalis to effectors of the innate immune system such as lysozyme and bile salts. We show that the corresponding genes contribute to the decoration of a conserved polysaccharide called the enterococcal polysaccharide antigen and that this decoration is essential for E. faecalis virulence. This mechanism critical for pathogenesis represents an attractive therapeutic target to control enterococcal infections.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Global Emergence and Dissemination of Enterococci as Nosocomial Pathogens: Attack of the Clones?

          Enterococci are Gram-positive bacteria that are found in plants, soil and as commensals of the gastrointestinal tract of humans, mammals, and insects. Despite their commensal nature, they have also become globally important nosocomial pathogens. Within the genus Enterococcus, Enterococcus faecium, and Enterococcus faecalis are clinically most relevant. In this review, we will discuss how E. faecium and E. faecalis have evolved to become a globally disseminated nosocomial pathogen. E. faecium has a defined sub-population that is associated with hospitalized patients and is rarely encountered in community settings. These hospital-associated clones are characterized by the acquisition of adaptive genetic elements, including genes involved in metabolism, biofilm formation, and antibiotic resistance. In contrast to E. faecium, clones of E. faecalis isolated from hospitalized patients, including strains causing clinical infections, are not exclusively found in hospitals but are also present in healthy individuals and animals. This observation suggests that the division between commensals and hospital-adapted lineages is less clear for E. faecalis than for E. faecium. In addition, genes that are reported to be associated with virulence of E. faecalis are often not unique to clinical isolates, but are also found in strains that originate from commensal niches. As a reflection of more ancient association of E. faecalis with different hosts, these determinants Thus, they may not represent genuine virulence genes but may act as host-adaptive functions that are useful in a variety of intestinal environments. The scope of the review is to summarize recent trends in the emergence of antibiotic resistance and explore recent developments in the molecular epidemiology, population structure and mechanisms of adaptation of E. faecium and E. faecalis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Comparative Genomics of Enterococci: Variation in Enterococcus faecalis, Clade Structure in E. faecium, and Defining Characteristics of E. gallinarum and E. casseliflavus

            Introduction The enterococci are a diverse group of Gram-positive gastrointestinal (GI) tract colonizers with lifestyles ranging from intestinal symbiont to environmental persister to multidrug-resistant nosocomial pathogen (1, 2, 3). Enterococci are used in food production, in probiotic products, and for tracking fecal contamination and thus also are of regulatory and industrial interest. Most enterococcal research has focused on the two species most associated with human GI tract colonization and infection, Enterococcus faecium and Enterococcus faecalis (2, 3). Certain lineages, defined by multilocus sequence typing (MLST), are associated with hospital-acquired infections (e.g., E. faecium sequence type 17 [ST17] ST18, ST78, and ST203 and E. faecalis ST6, ST9, and ST40) (4). Genome analysis has illuminated the extent of mobile content (5) and evolution of antibiotic resistance (6) in E. faecalis ST6 strain V583 and the mobile element content and metabolic capabilities of E. faecium (7). Using genomic data we recently developed for 28 enterococcal strains (8), we report and quantify divergence within what is currently classified as E. faecium and E. faecalis and identify the genetic bases for the defining characteristics of the motile enterococcal species Enterococcus gallinarum and Enterococcus casseliflavus. We identify loci homologous to those known to direct the synthesis of extracellular polymers that interact with host surfaces, including a putative E. faecium capsule locus. We additionally identify genetic sequences and biochemical functions that represent distinguishing features of potential value for the rapid identification of enterococci to the species level. RESULTS AND DISCUSSION Phylogenetic analysis of enterococci. We recently announced the public release of genome sequence data for 28 enterococcal strains of diverse origin (8) (see Table S1 in the supplemental material). The 16 E. faecalis genomes sequenced represent the deepest nodes in the MLST phylogeny, providing the greatest diversity. The strains include those of clinical, animal, and insect origins and were isolated from 1926 to 2005 (9). These strains represent approximately 80 years of enterococcal evolution, spanning the periods prior to and during widespread antibiotic use. Additionally, the genomes of 6 E. faecium, 1 E. gallinarum, and 3 E. casseliflavus clinical isolates from 2001 to 2005 and 2 human fecal E. faecium strains were examined. OrthoMCL (10) was used to identify ortholog groups in the 30 enterococcal genomes. Ortholog groups represented in all 31 genomes were considered core groups, which were further subdivided into single-copy (1 gene copy in each genome) and multicopy (>1 gene copy exists in at least 1 genome). Genes not clustered were considered orphans. A phylogenetic tree generated from the concatenated sequences of 847 single-copy core genes is shown in Fig. 1. Relationships among the 18 E. faecalis strains, despite their diverse origins, cannot be fully resolved by this analysis (based on lack of bootstrap support for branches within the E. faecalis branch; inset, Fig. 1). As expected, E. casseliflavus and E. gallinarum branch separately, supporting their designation as different species. Importantly, two clades were identified within the species E. faecium, as had been inferred by comparative genome hybridization, which suggested that hospital-associated isolates, including ST17 and ST18 isolates, may make up a distinct subspecies within E. faecium (11). The 3 vancomycin-resistant E. faecium strains in our collection are members of clade A, while the 2 human fecal isolates are members of clade B (Fig. 1). To quantify the relationships among these strains, we generated average nucleotide identity (ANI) plots (Fig. 2), which have been used to query and refine prokaryotic species definitions (12, 13). FIG 1 Core gene tree. Concatenated sequences of 847 genes core to 30 enterococci and the outgroup species L. lactis were aligned, and a phylogenetic tree was generated using RAxML with bootstrapping. The bootstrap value for all nodes outside the E. faecalis clade is 100. E. faecium clades A (blue) and B (red) are indicated. FIG 2 ANI plot. Each point represents a pairwise comparison of two genomes. Grey diamonds, E. faecalis-E. faecalis comparisons. Blue circles, clade A E. faecium-clade A E. faecium comparisons. Red circles, clade B E. faecium-clade B E. faecium comparisons. Yellow circles, clade A E. faecium-clade B E. faecium comparisons. A species threshold of 94 to 95% ANI is indicated by the green-shaded area. E. faecium. The E. faecium ANI analysis refines phylogenetic relationships among clade A and clade B strains (Fig. 2). Within clade A, ST17 strain 410 and double-locus variants (DLVs) 933 (ST18) and 502 (ST203) are closely related (99.2 to 99.4% ANI) whereas strains 501 (ST52) and 408 (ST582, an ST17 DLV) have lower ANI values with those strains, and each other (96.9 to 98.2% ANI). Similar ANI values were observed among clade B strains (97.9 to 99.4%). However, pairwise comparisons of clade A and clade B strains ranged from 93.9 to 95.6% ANI, overlapping an ANI species line of 94 to 95%. ANI values of 94 to 95% correlate with experimentally derived 70% DNA-DNA hybridization values, a commonly accepted threshold for species designation (12, 13, 14). Clade A and clade B may be endogenous to the GI tracts of different hosts and now coexist among human flora as a result of antibiotic elimination of competitors, or clade A and clade B may be diverging from each other as a result of antibiotic use and ecological isolation (less likely because of the short time involved). For the 8 E. faecium strains in our collection, the two clades are recapitulated using the 7 housekeeping genes selected for E. faecium MLST (see Fig. S1 in the supplemental material). Between clade A and clade B strains, the nucleotide identities of concatenated MLST sequences range from 96.2 to 96.9% (compared to a 93.9 to 95.6% ANI range). To determine whether a single marker is representative of either E. faecium clade, we examined the distribution of individual MLST alleles among the E. faecium STs assigned to clade A or clade B (see Fig. S1 in the supplemental material). A “minority allelic population” composed of 5 divergent STs was reported in seminal E. faecium MLST work (15). The 5 divergent STs (ST39, ST40, ST60, ST61, and ST62) identified by that study belong to clade B (see Fig. S1 in the supplemental material). The genomes of 7 additional E. faecium strains were recently sequenced (7), and we used MLST to assign them to clade A or B (see Fig. S1 in the supplemental material). The assignment of one of these strains, E. faecium E980, to clade B is consistent with previous analyses demonstrating the phylogenetic distance of this strain from the other 6 (clade A) strains in that sequencing collection (7). In the first-pass analysis, the allele adk-6, which differs from the ST17 allele adk-1 at 3 synonymous sites, was observed to occur almost exclusively in clade B strains (see Fig. S1 in the supplemental material). To further explore the distribution of adk alleles among E. faecium isolates, we extracted sequences of all 617 available STs in the E. faecium MLST database and determined the extents of identity to an ST17 (clade A) reference. In the MLST database, adk-1, adk-5, and adk-6 are the most abundant adk alleles, representing 87% of the E. faecium STs. Of the 85 STs possessing adk-6, 66 (78%) share 96 to 96.9% nucleotide identity with ST17, comparable to that observed for clade B-ST17 comparisons. Conversely, adk-1 and adk-5 occur primarily in STs with ≥99% identity to ST17. These data suggest that adk allele exchange is restricted, perhaps resulting from a barrier to DNA uptake such as clustered regularly interspaced short palindromic repeats (CRISPR)-cas defense and/or from the proximity of adk to the replication origin (Fig. 3). FIG 3 E. faecium genome mosaicism plot. The outermost ring shows E. faecium Com12 scaffolds, ordered by decreasing length clockwise from scaffold 1, with each gene represented as a radial position along the ring. Each of the remaining 7 E. faecium genomes is represented by the rings below Com12. Genes are colored by membership in clade A (blue) or clade B (red), as determined by individual gene trees built from ortholog groups. The strains shown, from the outermost to the innermost rings, are Com12, 733, Com15, 501, 408, 502, 933, and 410. The locations of dnaA, Com12 MLST alleles, pbp5, and the EfmCRISPR1-cas locus are shown. E. faecium 408 is a DLV of ST17 that possesses adk-6 and ddl-13 (see Fig. S1 in the supplemental material). Because adk-6 occurs mostly among strains with lower relatedness to ST17, and ddl-13 is present in two clade B strains (see Fig. S1 in the supplemental material), we were curious about whether these alleles were acquired by recombination. Genome mosaicism is evident in E. faecium clade A strains 408 and 501 (Fig. 3). The occurrence of adk-6 and ddl-13 within a hybrid region in E. faecium 408 (Fig. 3; see data set S1 in the supplemental material) supports the acquisition of this region from a clade B strain. The putative genome defense system EfmCRISPR1-cas (16), present in 2 of 3 clade B strains and in E. faecium 408 (see Table S1 in the supplemental material), occurs within this region, suggesting that CRISPR-cas was acquired by E. faecium 408 from a clade B strain via recombination. The hybrid region in E. faecium 501 includes pbp5 (Fig. 3; see data set S1 in the supplemental material), which can confer ampicillin resistance. Our results indicate that pbp5-S was acquired by E. faecium 501 from a clade B strain. The hybrid region in 501 is flanked by a putative phage integrase (EFRG_00906) that is conserved among all of the E. faecium strains in our collection (see data set S1 in the supplemental material). We recently reported an Hfr-like mechanism for the transfer of chromosomal genes between E. faecalis strains (17), and it seems likely that a similar mechanism functions in E. faecium. To determine whether specific traits define the two E. faecium clades, we searched for clade-specific ortholog groups present in and exclusive to all of the members of each clade. We then used representative gene sequences from each to search for similar sequences in 7 additional E. faecium genomes (7) assigned to clade A or B (see Fig. S1 in the supplemental material). Of the clade A-specific genes (see data set S2 and Table S2 in the supplemental material), 8 are associated with a locus that has high sequence identity with and almost the same gene content as the ycjMNOPQRSTUV locus of Escherichia coli, which is significantly enriched in enteric clades (18) and also occurs in Listeria (19). The organization of this locus is similar to that of a Lactobacillus acidophilus fructooligosaccharide (prebiotic) utilization locus (20). Of the genes unambiguously assigned to clade B (see data set S2 and Table S2 in the supplemental material), 5 encode putative transcriptional regulators with protein domain hits to Mga or Rgg, regulators of virulence, competence, and cell-cell signaling in streptococci (21, 22). Two of these putative regulators are divergently transcribed from genes that are also clade B specific, including a putative thioredoxin that could modulate the redox state of cellular targets in response to oxidative stress (23). A putative phospholipase C is also clade B specific. Finally, one clade B-specific gene (EFSG_01746) was useful in identifying a genomic insertion, composed of 17 genes, in E. faecium 733 (see Table S2 in the supplemental material). This region encodes a putative phosphotransferase system and a secreted hyaluronidase that could cleave the extracellular matrix of host cells. It is surprising that clade B (and not clade A, which contains all high-risk STs) strains encode a number of secreted factors that could interact with eukaryotic cell surfaces. This suggests that clade B strains may be more closely associated with host tissues in the GI tract than clade A strains are, which possibly contributes to their persistence in the GI tract, whereas clade A strains may be more transient and associated with the GI lumen, which contributes to their dissemination. E. faecalis. In contrast to E. faecium, little phylogenetic divergence was observed among E. faecalis strains (Fig. 2). Among 306 pairwise comparisons, ANI varies within a narrow range (97.8 to 99.5%). Instead, shared gene content among these strains varies (70.9 to 96.5%). For example, strain T11 shares 96.5% of its 2,511 genes with ST6 strain V583, while V583 shares only 72.8% of its 3,265 genes with T11; they possess 99.5% ANI in the genes that they share. The genome size of T11 is smaller than that of V583 (2.74 Mb versus 3.36 Mb) and is similar to that of the oral isolate OG1RF (24), likely representing the minimal E. faecalis genome. For all 18 E. faecalis strains, genome sizes vary between the extremes of T11 and V583 (see Table S1 in the supplemental material). We recently proposed that loss of CRISPR-cas in founders of modern E. faecalis high-risk MLST lineages facilitated the influx of acquired antibiotic resistance genes and other mobile traits into these lineages (16). Genome size distribution significantly differs between strains possessing or lacking CRISPR-cas (P = 0.026; one-tailed Wilcoxon rank-sum test), with a greater average genome size in strains lacking CRISPR-cas (3.1 Mbp versus 2.9 Mbp). The distribution of domain motifs associated with mobile elements is significantly different in strains with genomes >3 Mb in size (P 2 was considered a positive result. Each strain was tested twice, and the data shown are for both trials. Ratios of 3 Mb), substantial differences in gene content exist. Ecotypes defined by specific mobile element cohorts may be identified within high-risk lineages or in lineages with variable CRISPR-cas status (e.g., ST40 and ST21 [16]). Finally, comparative genomics highlighted fundamental differences between E. casseliflavus and E. gallinarum. The importance of the occurrence of motility operons in both but of genes related to the formation and function of the c-di-GMP second messenger only in E. casseliflavus and the impact of motility on metabolism represent interesting areas for future exploration. MATERIALS AND METHODS Enterococcal strains and genome sequencing. E. faecalis strains were selected for genome sequencing to represent the diversity of a collection of 106 isolates previously characterized (9). The E. faecalis V583 and OG1RF genome sequences were previously reported (5, 24). The E. casseliflavus, E. gallinarum, and 6 E. faecium strains were obtained from a repository of clinical isolates (Eurofins Medinet). E. faecium Com12 and Com15 were isolated from feces of healthy human volunteers under Schepens Eye Research Institute Institutional Review Board protocol 2006-02, Identification of Pathogenic Lineages of E. faecalis. E. faecium STs were previously determined (16, 55), and E. faecium MLST data were accessed at http://efaecium.mlst.net. The sequencing, assembly, annotation, and rapid public release of these genome sequences have been previously described (8). Standard analyses, OrthoMCL, and EnteroCyc. Orthologous gene groups were identified using OrthoMCL (10), with an all-versus-all BLAST cutoff of 1E−5. Lactococcus lactis subsp. cremoris SK11 plasmid (NC_008503 to NC_008507) and chromosomal (NC_008527) genes were included as the outgroup. Coding sequences were aligned using Muscle (56), and poorly conserved regions were trimmed using trimAI (57). All trimmed alignments were concatenated and used to estimate phylogeny using maximum likelihood and 1,000 bootstrap trials as implemented by RAxML (58) using the rapid-bootstrapping option and the GTRMIX model. Conserved protein domains were predicted using HMMER3 (59) to search the Pfam (release 24; http://pfam.janelia.org) (60) and TIGRfam (release 10) (61) databases. The statistical significance of differences in genome size and conserved protein domain distribution was assessed using the one-tailed Wilcoxon rank sum test. Membrane helix predictions were generated with transmembrane protein topology with a hidden Markov model (14). Protein subcellular localization predictions were generated using PsortB (62). Sequence alignments and phylogenetic trees in the figures in the supplemental material were generated with ClustalW in MacVector. Enzyme Commission (EC) numbers for the proteins in EnteroCyc (http://enterocyc.broadinstitute.org/) were predicted using gene coding sequences (CDS) and BLASTX to search the KEGG database (release 56) (63) and assigning EC numbers based on the KEGG annotation. Only significant hits with an E value of <1E−10 and 70% overlap were considered. Pathways, operons, transporters, and pathway holes were predicted using the Pathway Tools software suite (64, 65). Unless otherwise noted, BLASTP and nucleotide megaBLAST queries were executed against the NCBI nonredundant protein sequence, nucleotide collection, and whole-genome shotgun read databases using NCBI BLAST. Proteins encoded by the E. casseliflavus EC10 motility locus were compared to a B. subtilis 168 reference using BLASTP (see data set S3 in the supplemental material); the B. subtilis 168 flagellum is a reference Gram-positive flagellum in the KEGG database (http://www.genome.jp/kegg-bin/show_pathway?bsu02040). ANI and shared-gene analyses. OrthoMCL ortholog groups were used to determine shared gene contents in pairwise genome comparisons. For a genome pair (genome 1 and genome 2), the total number of genes in genome 1 was determined and the number of genes in genome 1 shared with genome 2 (based on shared ortholog group membership) was determined. Percent shared gene content was calculated by dividing the number of genome 1 genes shared with genome 2 by the number of genes in genome 1. Nucleotide alignments of shared genes were used to determine the numbers of identical and different nucleotide residues in shared genes. For comparisons within species, at least 2,113 gene sequences were utilized. Percent ANI was calculated by dividing the number of identical nucleotide residues in shared genes by the total number of nucleotide residues. Recombination analysis. See the Text S1 in the supplemental material for a description of the methods used for genome mosaicism analysis and plot generation. Biolog analysis. A subset of strains (8/18 E. faecalis, 6/8 E. faecium, 3/3 E. casseliflavus, and 1/1 E. gallinarum) representing the diversity of the collection were analyzed in duplicate by Biolog Phenotype microarrays in accordance with the manufacturer’s instructions. Optical density at 590 nm (OD590) was read using a synergy 2 microplate reader (Bio-Tek). The 48-h OD590 reading of each well containing a carbon source was divided by the OD590 value obtained for the negative-control well. A ratio which gave a reproducible value of 2× the background was considered to be a positive result. SUPPLEMENTAL MATERIAL Text S1 Supplemental methods. Expanded methods for genome mosaicism analysis and plot generation. Download Text S1, DOCX file, 0.1 MB. Text S1, DOCX file, 0.1 MB Data set S1 E. faecium 408 and E. faecium 501 mosaic genes. Download Data set S1, XLSX file, 0.1 MB. Data set S1, XLSX file, 0.1 MB Data set S2 E. faecium clade-specific ortholog group nucleotide BLAST analysis against 7 additional sequenced E. faecium isolates. Download Data set S2, XLSX file, 0.1 MB. Data set S2, XLSX file, 0.1 MB Data set S3 Motile enterococcus BLAST and Pfam analyses. Download Data set S3, XLSX file, 0.1 MB. Data set S3, XLSX file, 0.1 MB Data set S4 Extracellular polymer biosynthesis BLAST and Pfam analyses. Download Data set S4, XLSX file, 0.1 MB. Data set S4, XLSX file, 0.1 MB Figure S1 E. faecium MLST tree. Sequences were downloaded from the E. faecium MLST database and aligned using ClustalW in MacVector. A phylogenetic tree with bootstrapping (1,000 replications) was generated by the unweighted-pair group method using average linkages. For each ST, MLST allele profiles were extracted from the database and are shown on the right. adk-6 alleles, identified as being highly specific to clade B, with the exception of clade A strain 408, are in red. ST39, ST40, ST60, ST61, and ST62 are the minority allelic population identified in reference 15. Download Figure S1, PDF file, 0.1 MB. Figure S1, PDF file, 0.1 MB Figure S2 Alignment of CrtM proteins from S. aureus Newman, E. gallinarum, and E. casseliflavus. Substrate interaction residues are indicated by dots. Two DxxxD motifs (red boxes) and Mg2+ interact with the diphosphates of the farnesyl-diphosphate molecules and with inhibitors. Identical residues are shaded, and similar residues are shaded lightly. Substrate interaction data are from reference 36. Download Figure S2, PDF file, 0.1 MB. Figure S2, PDF file, 0.1 MB Figure S3 E. faecalis and E. faecium epa loci. The core epa genes and downstream variable regions are shown for 18 E. faecalis and 8 E. faecium strains. Conserved anchor genes flanking the epa core genes and the variable regions are indicated. Variable-region genes are colored by annotations and by BLASTP and Pfam conserved-domain hits as shown in data set S4. Multiple Pfam domains were collapsed into categories (for example, glycosyltransferases). Only the most abundant Pfam categories are shown. Orphan genes not grouped by OrthoMCL are indicated. Contig gaps in scaffolds are indicated by black bars; and the size of each black bar is proportional to the number of N’s inserted during genome assembly. In E. faecalis ATCC 4200, a scaffold gap occurs in the epa variable region (indicated by vertical slashes). The drawing is to scale, and a scale bar is shown. Download Figure S3, PDF file, 0.1 MB. Figure S3, PDF file, 0.1 MB Table S1 Bacterial strain information. Table S1, DOC file, 0.1 MB. Table S2 E. faecium clade-specific genes. Table S2, DOC file, 0.1 MB.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Induced cell aggregation and mating in Streptococcus faecalis: evidence for a bacterial sex pheromone.

              Recipient strains of Streptococcus faecalis produce a trypsin sensitive, heat resistant, nuclease resistant factor, designated clumping-inducing agent (CIA) which causes strains carrying certain conjugative plasmids to aggregate. RNA and protein synthesis but not DNA synthesis are required for aggregation to occur. Recipient filtrates that contain CIA activity also induce donors to mate at high frequencies. Introduction of a transferable plasmid into strains producing CIA dramatically reduces the amount of CIA activity produced by the strain but allows the strain to respond to exogenously added CIA. Our data suggest that CIA represents a bacterial sex hormone (pheromone).
                Bookmark

                Author and article information

                Contributors
                Role: ConceptualizationRole: Data curationRole: Formal analysisRole: Funding acquisitionRole: InvestigationRole: MethodologyRole: ValidationRole: VisualizationRole: Writing – review & editing
                Role: Data curationRole: Formal analysisRole: InvestigationRole: MethodologyRole: ValidationRole: VisualizationRole: Writing – review & editing
                Role: InvestigationRole: MethodologyRole: Validation
                Role: InvestigationRole: Validation
                Role: Formal analysisRole: Funding acquisitionRole: InvestigationRole: MethodologyRole: Validation
                Role: InvestigationRole: Validation
                Role: InvestigationRole: MethodologyRole: ValidationRole: VisualizationRole: Writing – review & editing
                Role: InvestigationRole: Validation
                Role: InvestigationRole: MethodologyRole: ResourcesRole: ValidationRole: Writing – review & editing
                Role: Resources
                Role: ConceptualizationRole: Funding acquisitionRole: SupervisionRole: Writing – review & editing
                Role: ConceptualizationRole: Data curationRole: Formal analysisRole: InvestigationRole: MethodologyRole: Project administrationRole: ResourcesRole: SupervisionRole: ValidationRole: VisualizationRole: Writing – original draftRole: Writing – review & editing
                Role: ConceptualizationRole: Data curationRole: Formal analysisRole: Funding acquisitionRole: Project administrationRole: SupervisionRole: ValidationRole: VisualizationRole: Writing – original draftRole: Writing – review & editing
                Role: Editor
                Journal
                PLoS Pathog
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, CA USA )
                1553-7366
                1553-7374
                2 May 2019
                May 2019
                : 15
                : 5
                : e1007730
                Affiliations
                [1 ] Krebs Institute, University of Sheffield, Firth Court, Western Bank, Sheffield, United Kingdom
                [2 ] Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, United Kingdom
                [3 ] Unité des Aspergillus, Institut Pasteur, Paris, France
                [4 ] Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy en Josas, France
                University of California, San Francisco, UNITED STATES
                Author notes

                The authors have declared that no competing interests exist.

                Author information
                http://orcid.org/0000-0003-4948-7174
                http://orcid.org/0000-0001-9157-5800
                http://orcid.org/0000-0003-4794-2858
                http://orcid.org/0000-0001-8627-9994
                http://orcid.org/0000-0001-5572-1903
                http://orcid.org/0000-0002-8446-9011
                http://orcid.org/0000-0003-1648-4890
                Article
                PPATHOGENS-D-18-02275
                10.1371/journal.ppat.1007730
                6497286
                31048927
                89c24c2f-a37d-460f-b7f3-156c5277649c
                © 2019 Smith et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 27 November 2018
                : 26 March 2019
                Page count
                Figures: 8, Tables: 2, Pages: 24
                Funding
                Funded by: funder-id http://dx.doi.org/10.13039/501100000268, Biotechnology and Biological Sciences Research Council;
                Award ID: BB/M011151/1 (Project 1802691)
                Award Recipient :
                Funded by: funder-id http://dx.doi.org/10.13039/501100000265, Medical Research Council;
                Award ID: MR/N02995X/1
                Award Recipient :
                Funded by: funder-id http://dx.doi.org/10.13039/501100000268, Biotechnology and Biological Sciences Research Council;
                Award ID: BB/R000727/1
                Award Recipient :
                RES was funded by a Biotechnology and Biological Sciences Research Council studentship (grant BB/M011151/1 to SM; http://www.bbsrc.ac.uk/). TKP was supported by Medical Research Council grant MR/N02995X/1 ( https://mrc.ukri.org/). MPW was supported by Biotechnology and Biological Sciences Research Council grant BB/R000727/1 ( http://www.bbsrc.ac.uk/). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Organisms
                Bacteria
                Enterococcus
                Enterococcus Faecalis
                Biology and Life Sciences
                Microbiology
                Medical Microbiology
                Microbial Pathogens
                Bacterial Pathogens
                Enterococcus
                Enterococcus Faecalis
                Medicine and Health Sciences
                Pathology and Laboratory Medicine
                Pathogens
                Microbial Pathogens
                Bacterial Pathogens
                Enterococcus
                Enterococcus Faecalis
                Biology and Life Sciences
                Biochemistry
                Enzymology
                Enzymes
                Lysozyme
                Biology and Life Sciences
                Biochemistry
                Proteins
                Enzymes
                Lysozyme
                Biology and Life Sciences
                Biochemistry
                Glycobiology
                Polysaccharides
                Biology and Life Sciences
                Genetics
                Genetic Elements
                Mobile Genetic Elements
                Transposable Elements
                Biology and Life Sciences
                Genetics
                Genomics
                Mobile Genetic Elements
                Transposable Elements
                Research and Analysis Methods
                Animal Studies
                Experimental Organism Systems
                Model Organisms
                Zebrafish
                Research and Analysis Methods
                Model Organisms
                Zebrafish
                Research and Analysis Methods
                Animal Studies
                Experimental Organism Systems
                Animal Models
                Zebrafish
                Biology and Life Sciences
                Organisms
                Eukaryota
                Animals
                Vertebrates
                Fish
                Osteichthyes
                Zebrafish
                Physical Sciences
                Chemistry
                Polymer Chemistry
                Macromolecules
                Polymers
                Peptidoglycans
                Physical Sciences
                Materials Science
                Materials
                Polymers
                Peptidoglycans
                Physical Sciences
                Chemistry
                Polymer Chemistry
                Polymers
                Peptidoglycans
                Biology and Life Sciences
                Cell Biology
                Cellular Types
                Animal Cells
                Blood Cells
                White Blood Cells
                Phagocytes
                Biology and Life Sciences
                Cell Biology
                Cellular Types
                Animal Cells
                Immune Cells
                White Blood Cells
                Phagocytes
                Biology and Life Sciences
                Immunology
                Immune Cells
                White Blood Cells
                Phagocytes
                Medicine and Health Sciences
                Immunology
                Immune Cells
                White Blood Cells
                Phagocytes
                Medicine and Health Sciences
                Infectious Diseases
                Bacterial Diseases
                Enterococcus Infections
                Custom metadata
                All relevant data are within the manuscript and its Supporting Information files.

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article