23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Bacteria, phages and pigs: the effects of in-feed antibiotics on the microbiome at different gut locations

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Disturbance of the beneficial gut microbial community is a potential collateral effect of antibiotics, which have many uses in animal agriculture (disease treatment or prevention and feed efficiency improvement). Understanding antibiotic effects on bacterial communities at different intestinal locations is essential to realize the full benefits and consequences of in-feed antibiotics. In this study, we defined the lumenal and mucosal bacterial communities from the small intestine (ileum) and large intestine (cecum and colon) plus feces, and characterized the effects of in-feed antibiotics (chlortetracycline, sulfamethazine and penicillin (ASP250)) on these communities. 16S rRNA gene sequence and metagenomic analyses of bacterial membership and functions revealed dramatic differences between small and large intestinal locations, including enrichment of Firmicutes and phage-encoding genes in the ileum. The large intestinal microbiota encoded numerous genes to degrade plant cell wall components, and these genes were lacking in the ileum. The mucosa-associated ileal microbiota harbored greater bacterial diversity than the lumen but similar membership to the mucosa of the large intestine, suggesting that most gut microbes can associate with the mucosa and might serve as an inoculum for the lumen. The collateral effects on the microbiota of antibiotic-fed animals caused divergence from that of control animals, with notable changes being increases in Escherichia coli populations in the ileum, Lachnobacterium spp. in all gut locations, and resistance genes to antibiotics not administered. Characterizing the differential metabolic capacities and response to perturbation at distinct intestinal locations will inform strategies to improve gut health and food safety.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          ARDB—Antibiotic Resistance Genes Database

          The treatment of infections is increasingly compromised by the ability of bacteria to develop resistance to antibiotics through mutations or through the acquisition of resistance genes. Antibiotic resistance genes also have the potential to be used for bio-terror purposes through genetically modified organisms. In order to facilitate the identification and characterization of these genes, we have created a manually curated database—the Antibiotic Resistance Genes Database (ARDB)—unifying most of the publicly available information on antibiotic resistance. Each gene and resistance type is annotated with rich information, including resistance profile, mechanism of action, ontology, COG and CDD annotations, as well as external links to sequence and protein databases. Our database also supports sequence similarity searches and implements an initial version of a tool for characterizing common mutations that confer antibiotic resistance. The information we provide can be used as compendium of antibiotic resistance factors as well as to identify the resistance genes of newly sequenced genes, genomes, or metagenomes. Currently, ARDB contains resistance information for 13 293 genes, 377 types, 257 antibiotics, 632 genomes, 933 species and 124 genera. ARDB is available at http://ardb.cbcb.umd.edu/.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Error-correcting barcoded primers for pyrosequencing hundreds of samples in multiplex.

            We constructed error-correcting DNA barcodes that allow one run of a massively parallel pyrosequencer to process up to 1,544 samples simultaneously. Using these barcodes we processed bacterial 16S rRNA gene sequences representing microbial communities in 286 environmental samples, corrected 92% of sample assignment errors, and thus characterized nearly as many 16S rRNA genes as have been sequenced to date by Sanger sequencing.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Antibiotic growth promoters in agriculture: history and mode of action

                Bookmark

                Author and article information

                Journal
                The ISME Journal
                ISME J
                Springer Science and Business Media LLC
                1751-7362
                1751-7370
                August 2014
                February 13 2014
                August 2014
                : 8
                : 8
                : 1566-1576
                Article
                10.1038/ismej.2014.12
                24522263
                89c64b00-0ad5-4aef-8694-0487b9f6e3a9
                © 2014

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article