Blog
About

260
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          microRNAs (miRNAs) are a large class of small non-coding RNAs which post-transcriptionally regulate the expression of a large fraction of all animal genes and are important in a wide range of biological processes. Recent advances in high-throughput sequencing allow miRNA detection at unprecedented sensitivity, but the computational task of accurately identifying the miRNAs in the background of sequenced RNAs remains challenging. For this purpose, we have designed miRDeep2, a substantially improved algorithm which identifies canonical and non-canonical miRNAs such as those derived from transposable elements and informs on high-confidence candidates that are detected in multiple independent samples. Analyzing data from seven animal species representing the major animal clades, miRDeep2 identified miRNAs with an accuracy of 98.6–99.9% and reported hundreds of novel miRNAs. To test the accuracy of miRDeep2, we knocked down the miRNA biogenesis pathway in a human cell line and sequenced small RNAs before and after. The vast majority of the >100 novel miRNAs expressed in this cell line were indeed specifically downregulated, validating most miRDeep2 predictions. Last, a new miRNA expression profiling routine, low time and memory usage and user-friendly interactive graphic output can make miRDeep2 useful to a wide range of researchers.

          Related collections

          Most cited references 54

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Fast and accurate short read alignment with Burrows–Wheeler transform

          Motivation: The enormous amount of short reads generated by the new DNA sequencing technologies call for the development of fast and accurate read alignment programs. A first generation of hash table-based methods has been developed, including MAQ, which is accurate, feature rich and fast enough to align short reads from a single individual. However, MAQ does not support gapped alignment for single-end reads, which makes it unsuitable for alignment of longer reads where indels may occur frequently. The speed of MAQ is also a concern when the alignment is scaled up to the resequencing of hundreds of individuals. Results: We implemented Burrows-Wheeler Alignment tool (BWA), a new read alignment package that is based on backward search with Burrows–Wheeler Transform (BWT), to efficiently align short sequencing reads against a large reference sequence such as the human genome, allowing mismatches and gaps. BWA supports both base space reads, e.g. from Illumina sequencing machines, and color space reads from AB SOLiD machines. Evaluations on both simulated and real data suggest that BWA is ∼10–20× faster than MAQ, while achieving similar accuracy. In addition, BWA outputs alignment in the new standard SAM (Sequence Alignment/Map) format. Variant calling and other downstream analyses after the alignment can be achieved with the open source SAMtools software package. Availability: http://maq.sourceforge.net Contact: rd@sanger.ac.uk
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Gene Expression Omnibus: NCBI gene expression and hybridization array data repository.

             R. Edgar (2002)
            The Gene Expression Omnibus (GEO) project was initiated in response to the growing demand for a public repository for high-throughput gene expression data. GEO provides a flexible and open design that facilitates submission, storage and retrieval of heterogeneous data sets from high-throughput gene expression and genomic hybridization experiments. GEO is not intended to replace in house gene expression databases that benefit from coherent data sets, and which are constructed to facilitate a particular analytic method, but rather complement these by acting as a tertiary, central data distribution hub. The three central data entities of GEO are platforms, samples and series, and were designed with gene expression and genomic hybridization experiments in mind. A platform is, essentially, a list of probes that define what set of molecules may be detected. A sample describes the set of molecules that are being probed and references a single platform used to generate its molecular abundance data. A series organizes samples into the meaningful data sets which make up an experiment. The GEO repository is publicly accessible through the World Wide Web at http://www.ncbi.nlm.nih.gov/geo.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Most mammalian mRNAs are conserved targets of microRNAs.

              MicroRNAs (miRNAs) are small endogenous RNAs that pair to sites in mRNAs to direct post-transcriptional repression. Many sites that match the miRNA seed (nucleotides 2-7), particularly those in 3' untranslated regions (3'UTRs), are preferentially conserved. Here, we overhauled our tool for finding preferential conservation of sequence motifs and applied it to the analysis of human 3'UTRs, increasing by nearly threefold the detected number of preferentially conserved miRNA target sites. The new tool more efficiently incorporates new genomes and more completely controls for background conservation by accounting for mutational biases, dinucleotide conservation rates, and the conservation rates of individual UTRs. The improved background model enabled preferential conservation of a new site type, the "offset 6mer," to be detected. In total, >45,000 miRNA target sites within human 3'UTRs are conserved above background levels, and >60% of human protein-coding genes have been under selective pressure to maintain pairing to miRNAs. Mammalian-specific miRNAs have far fewer conserved targets than do the more broadly conserved miRNAs, even when considering only more recently emerged targets. Although pairing to the 3' end of miRNAs can compensate for seed mismatches, this class of sites constitutes less than 2% of all preferentially conserved sites detected. The new tool enables statistically powerful analysis of individual miRNA target sites, with the probability of preferentially conserved targeting (P(CT)) correlating with experimental measurements of repression. Our expanded set of target predictions (including conserved 3'-compensatory sites), are available at the TargetScan website, which displays the P(CT) for each site and each predicted target.
                Bookmark

                Author and article information

                Journal
                Nucleic Acids Res
                nar
                nar
                Nucleic Acids Research
                Oxford University Press
                0305-1048
                1362-4962
                January 2012
                January 2012
                10 September 2011
                10 September 2011
                : 40
                : 1
                : 37-52
                Affiliations
                1Laboratory for Systems Biology of Gene Regulatory Elements and 2Laboratory for New Sequencing Technology, Berlin Institute for Medical Systems Biology at the Max-Delbrück-Center for Molecular Medicine, Berlin-Buch 13125, Germany
                Author notes
                * To whom correspondence should be addressed. Tel: +49 30 9406 2999; Fax: +49 30 9406 3068; Email: rajewsky@ 123456mdc-berlin.de

                Present address: Marc R. Friedländer, Centre for Genomic Regulation, Barcelona 08003, Catalonia, Spain

                The authors wish it to be known that, in their opinion, the first two authors should be regarded as joint First Authors.

                Article
                gkr688
                10.1093/nar/gkr688
                3245920
                21911355
                © The Author(s) 2011. Published by Oxford University Press.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/3.0), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                Counts
                Pages: 16
                Categories
                Computational Biology

                Genetics

                Comments

                Comment on this article