58
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Production of specific antibodies against SARS-coronavirus nucleocapsid protein without cross reactivity with human coronaviruses 229E and OC43

      brief-report

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Severe acute respiratory syndrome (SARS) is a life-threatening disease for which accurate diagnosis is essential. Although many tools have been developed for the diagnosis of SARS, false-positive reactions in negative sera may occur because of cross-reactivity with other coronaviruses. We have raised polyclonal and monoclonal antibodies (Abs) using a recombinant form of the SARS virus nucleocapsid protein. Cross-reactivity of these anti-SARS Abs against human coronavirus (HCoV) 229E and HCoV OC43 were determined by Western blotting. The Abs produced reacted with recombinant SARS virus nucleocapsid protein, but not with HCoV 229E or HCoV OC43.

          Related collections

          Most cited references12

          • Record: found
          • Abstract: found
          • Article: not found

          Characterization of a novel coronavirus associated with severe acute respiratory syndrome.

          P Rota (2003)
          In March 2003, a novel coronavirus (SARS-CoV) was discovered in association with cases of severe acute respiratory syndrome (SARS). The sequence of the complete genome of SARS-CoV was determined, and the initial characterization of the viral genome is presented in this report. The genome of SARS-CoV is 29,727 nucleotides in length and has 11 open reading frames, and its genome organization is similar to that of other coronaviruses. Phylogenetic analyses and sequence comparisons showed that SARS-CoV is not closely related to any of the previously characterized coronaviruses.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Characterization and complete genome sequence of a novel coronavirus, coronavirus HKU1, from patients with pneumonia.

            Despite extensive laboratory investigations in patients with respiratory tract infections, no microbiological cause can be identified in a significant proportion of patients. In the past 3 years, several novel respiratory viruses, including human metapneumovirus, severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV), and human coronavirus NL63, were discovered. Here we report the discovery of another novel coronavirus, coronavirus HKU1 (CoV-HKU1), from a 71-year-old man with pneumonia who had just returned from Shenzhen, China. Quantitative reverse transcription-PCR showed that the amount of CoV-HKU1 RNA was 8.5 to 9.6 x 10(6) copies per ml in his nasopharyngeal aspirates (NPAs) during the first week of the illness and dropped progressively to undetectable levels in subsequent weeks. He developed increasing serum levels of specific antibodies against the recombinant nucleocapsid protein of CoV-HKU1, with immunoglobulin M (IgM) titers of 1:20, 1:40, and 1:80 and IgG titers of <1:1,000, 1:2,000, and 1:8,000 in the first, second and fourth weeks of the illness, respectively. Isolation of the virus by using various cell lines, mixed neuron-glia culture, and intracerebral inoculation of suckling mice was unsuccessful. The complete genome sequence of CoV-HKU1 is a 29,926-nucleotide, polyadenylated RNA, with G+C content of 32%, the lowest among all known coronaviruses with available genome sequence. Phylogenetic analysis reveals that CoV-HKU1 is a new group 2 coronavirus. Screening of 400 NPAs, negative for SARS-CoV, from patients with respiratory illness during the SARS period identified the presence of CoV-HKU1 RNA in an additional specimen, with a viral load of 1.13 x 10(6) copies per ml, from a 35-year-old woman with pneumonia. Our data support the existence of a novel group 2 coronavirus associated with pneumonia in humans.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: a prospective study.

              We investigated the temporal progression of the clinical, radiological, and virological changes in a community outbreak of severe acute respiratory syndrome (SARS). We followed up 75 patients for 3 weeks managed with a standard treatment protocol of ribavirin and corticosteroids, and assessed the pattern of clinical disease, viral load, risk factors for poor clinical outcome, and the usefulness of virological diagnostic methods. Fever and pneumonia initially improved but 64 (85%) patients developed recurrent fever after a mean of 8.9 (SD 3.1) days, 55 (73%) had watery diarrhoea after 7.5 (2.3) days, 60 (80%) had radiological worsening after 7.4 (2.2) days, and respiratory symptoms worsened in 34 (45%) after 8.6 (3.0) days. In 34 (45%) patients, improvement of initial pulmonary lesions was associated with appearance of new radiological lesions at other sites. Nine (12%) patients developed spontaneous pneumomediastinum and 15 (20%) developed acute respiratory distress syndrome (ARDS) in week 3. Quantitative reverse-transcriptase (RT) PCR of nasopharyngeal aspirates in 14 patients (four with ARDS) showed peak viral load at day 10, and at day 15 a load lower than at admission. Age and chronic hepatitis B virus infection treated with lamivudine were independent significant risk factors for progression to ARDS (p=0.001). SARS-associated coronavirus in faeces was seen on RT-PCR in 65 (97%) of 67 patients at day 14. The mean time to seroconversion was 20 days. The consistent clinical progression, shifting radiological infiltrates, and an inverted V viral-load profile suggest that worsening in week 2 is unrelated to uncontrolled viral replication but may be related to immunopathological damage.
                Bookmark

                Author and article information

                Journal
                J Vet Sci
                JVS
                Journal of Veterinary Science
                The Korean Society of Veterinary Science
                1229-845X
                1976-555X
                June 2010
                11 May 2010
                : 11
                : 2
                : 165-167
                Affiliations
                [1 ]Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Korea.
                [2 ]Department of Animal Experimentation, College of Medicine, Seoul National University, Seoul 110-799, Korea.
                [3 ]Laboratory of Public Health, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan.
                [4 ]Biological Diagnostic Products Team, Biologics Headquarters, Korea Food and Drug Administration, Seoul 122-704, Korea.
                Author notes
                Corresponding author: Tel: +82-2-880-1256; Fax: +82-2-880-1256, pjhak@ 123456snu.ac.kr
                Article
                10.4142/jvs.2010.11.2.165
                2873818
                20458159
                89d1fbb0-061e-4197-aa26-1d081b727c9e
                Copyright © 2010 The Korean Society of Veterinary Science
                History
                Categories
                Short Communication

                Veterinary medicine
                sars,hcov oc43,recombinant nucleocapsid protein,hcov 229e,cross-reactivity
                Veterinary medicine
                sars, hcov oc43, recombinant nucleocapsid protein, hcov 229e, cross-reactivity

                Comments

                Comment on this article