19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Glance at Methods for Cleft Palate Repair

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Context:

          Cleft palate is the second most common birth defect and is considered as a challenge for pediatric plastic surgeons. There is still a general lack of a standard protocol and patients often require multiple surgical interventions during their lifetime along with disappointing results.

          Evidence Acquisition:

          PubMed search was undertaken using search terms including 'cleft palate repair', 'palatal cleft closure', 'cleft palate + stem cells', 'cleft palate + plasma rich platelet', 'cleft palate + scaffold', 'palatal tissue engineering', and 'bone tissue engineering'. The found articles were included if they defined a therapeutic strategy and/or assessed a new technique.

          Results:

          We reported a summary of the key-points concerning cleft palate development, the genes involving this defect, current therapeutic strategies, recently novel aspects, and future advances in treatments for easy and fast understanding of the concepts, rather than a systematic review. In addition, the results were integrated with our recent experience.

          Conclusions:

          Tissue engineering may open a new window in cleft palate reconstruction. Stem cells and growth factors play key roles in this field.

          Related collections

          Most cited references87

          • Record: found
          • Abstract: found
          • Article: not found

          Bone tissue engineering: state of the art and future trends.

          Although several major progresses have been introduced in the field of bone regenerative medicine during the years, current therapies, such as bone grafts, still have many limitations. Moreover, and in spite of the fact that material science technology has resulted in clear improvements in the field of bone substitution medicine, no adequate bone substitute has been developed and hence large bone defects/injuries still represent a major challenge for orthopaedic and reconstructive surgeons. It is in this context that TE has been emerging as a valid approach to the current therapies for bone regeneration/substitution. In contrast to classic biomaterial approach, TE is based on the understanding of tissue formation and regeneration, and aims to induce new functional tissues, rather than just to implant new spare parts. The present review pretends to give an exhaustive overview on all components needed for making bone tissue engineering a successful therapy. It begins by giving the reader a brief background on bone biology, followed by an exhaustive description of all the relevant components on bone TE, going from materials to scaffolds and from cells to tissue engineering strategies, that will lead to "engineered" bone. Scaffolds processed by using a methodology based on extrusion with blowing agents.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Novel regulators of bone formation: molecular clones and activities.

            Protein extracts derived from bone can initiate the process that begins with cartilage formation and ends in de novo bone formation. The critical components of this extract, termed bone morphogenetic protein (BMP), that direct cartilage and bone formation as well as the constitutive elements supplied by the animal during this process have long remained unclear. Amino acid sequence has been derived from a highly purified preparation of BMP from bovine bone. Now, human complementary DNA clones corresponding to three polypeptides present in this BMP preparation have been isolated, and expression of the recombinant human proteins have been obtained. Each of the three (BMP-1, BMP-2A, and BMP-3) appears to be independently capable of inducing the formation of cartilage in vivo. Two of the encoded proteins (BMP-2A and BMP-3) are new members of the TGF-beta supergene family, while the third, BMP-1, appears to be a novel regulatory molecule.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Polymeric scaffolds for bone tissue engineering.

              Bone tissue engineering is a rapidly developing area. Engineering bone typically uses an artificial extracellular matrix (scaffold), osteoblasts or cells that can become osteoblasts, and regulating factors that promote cell attachment, differentiation, and mineralized bone formation. Among them, highly porous scaffolds play a critical role in cell seeding, proliferation, and new 3D-tissue formation. A variety of biodegradable polymer materials and scaffolding fabrication techniques for bone tissue engineering have been investigated over the past decade. This article reviews the polymer materials, scaffold design, and fabrication methods for bone tissue engineering. Advantages and limitations of these materials and methods are analyzed. Various architectural parameters of scaffolds important for bone tissue engineering (e.g. porosity, pore size, interconnectivity, and pore-wall microstructures) are discussed. Surface modification of scaffolds is also discussed based on the significant effect of surface chemistry on cells adhesion and function.
                Bookmark

                Author and article information

                Journal
                Iran Red Crescent Med J
                Iran Red Crescent Med J
                10.5812/ircmj
                Kowsar
                Iranian Red Crescent Medical Journal
                Kowsar
                2074-1804
                2074-1812
                05 September 2014
                September 2014
                : 16
                : 9
                : e15393
                Affiliations
                [1 ]Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, IR Iran
                [2 ]Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, IR Iran
                [3 ]Biochemistry and Nutrition Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, IR Iran
                Author notes
                [* ]Corresponding Author: Daryoush Hamidi Alamdari, Biochemistry and Nutrition Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, IR Iran. Tel: +98-9151017650, E-mail: Hamidiad@ 123456mums.ac.ir
                Article
                10.5812/ircmj.15393
                4270645
                89dc0ffe-793d-43bc-8212-2afde1fb7a93
                Copyright © 2014, Iranian Red Crescent Medical Journal; Published by Kowsar.

                This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License ( http://creativecommons.org/licenses/by-nc/4.0/) which permits copy and redistribute the material just in noncommercial usages, provided the original work is properly cited.

                History
                : 20 October 2013
                : 13 January 2014
                : 21 January 2014
                Categories
                Review Article

                Medicine
                cleft palate,cleft lip,platelet-derived growth factor,transforming growth factor,mesenchymal stem cells,embryonic stem cells,platelet-rich plasma

                Comments

                Comment on this article