6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mobilized Multipotent Hematopoietic Progenitors Promote Expansion and Survival of Allogeneic Tregs and Protect Against Graft Versus Host Disease

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Allogeneic Hematopoietic Stem Cell Transplantation (Allo-HSCT) is routinely performed with peripheral blood stem cells (PBSCs) mobilized by injection of G-CSF, a growth factor which not only modulates normal hematopoiesis but also induces diverse immature regulatory cells. Based on our previous evidence that G-CSF-mobilized multipotent hematopoietic progenitors (MPP) can increase survival and proliferation of natural regulatory T cells (Tregs) in autoimmune disorders, we addressed the question how these cells come into play in mice and humans in an alloimmune setting. Using a C57BL/6 mouse model, we demonstrate that mobilized MPP enhance the immunosuppressant effect exerted by Tregs, against alloreactive T lymphocytes, both in vitro and in vivo. They do so by migrating to sites of allopriming, interacting with donor Tregs and increasing their numbers, thus reducing the lethality of graft-versus-host disease (GVHD). Protection correlates likewise with increased allospecific Treg counts. Furthermore, we provide evidence for a phenotypically similar MPP population in humans, where it shares the capacity to promote selective Treg expansion in vitro. We postulate that G-CSF-mobilized MPPs might become a valuable cellular therapy to expand donor Tregs in vivo and prevent GVHD, thereby making allo-HSCT safer for the treatment of leukemia patients.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          T-bet controls regulatory T cell homeostasis and function during type-1 inflammation

          Several subsets of Foxp3+ regulatory T (Treg) cells work in concert to maintain immune homeostasis. However, the molecular bases underlying the phenotypic and functional diversity of Treg cells remain obscure. We show that in response to interferon-γ, Foxp3+ Treg cells upregulated the T helper 1 (TH1)-specifying transcription factor T-bet. T-bet promoted expression of the chemokine receptor CXCR3 on Treg cells, and T-bet+ Treg cells accumulated at sites of TH1-mediated inflammation. Furthermore, T-bet expression was required for the homeostasis and function of Treg cells during type-1 inflammation. Thus, within a subset of CD4+ T cells, the activities of Foxp3 and T-bet are overlaid, resulting in Treg cells with unique homeostatic and migratory properties optimized for suppression of TH1 responses in vivo.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Foxp3 instability leads to the generation of pathogenic memory T cells in vivo

            Regulatory T (Treg) cells play a central role in maintaining immune homeostasis. However, little is known about the stability of Treg cells in vivo. In this study, we demonstrate that a significant percentage of cells exhibited transient or unstable Foxp3 expression. These exFoxp3+ T cells express an activated-memory T cell phenotype, and produced inflammatory cytokines. Moreover, exFoxp3 cell numbers increased in inflamed tissues under autoimmune conditions. Adoptive transfer of autoreactive exFoxp3 cells led to the rapid-onset of diabetes. Finally, T cell receptor repertoire analyses suggested that exFoxp3 cells develop from both natural and adaptive Treg cells. Thus, the generation of potentially autoreactive effector T cells as a consequence of Foxp3 instability has important implications for understanding autoimmune disease pathogenesis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Interleukin-2 and regulatory T cells in graft-versus-host disease.

              Dysfunction of regulatory T (Treg) cells has been detected in diverse inflammatory disorders, including chronic graft-versus-host disease (GVHD). Interleukin-2 is critical for Treg cell growth, survival, and activity. We hypothesized that low-dose interleukin-2 could preferentially enhance Treg cells in vivo and suppress clinical manifestations of chronic GVHD. In this observational cohort study, patients with chronic GVHD that was refractory to glucocorticoid therapy received daily low-dose subcutaneous interleukin-2 (0.3×10(6), 1×10(6), or 3×10(6) IU per square meter of body-surface area) for 8 weeks. The end points were safety and clinical and immunologic response. After a 4-week hiatus, patients with a response could receive interleukin-2 for an extended period. A total of 29 patients were enrolled. None had progression of chronic GVHD or relapse of a hematologic cancer. The maximum tolerated dose of interleukin-2 was 1×10(6) IU per square meter. The highest dose level induced unacceptable constitutional symptoms. Of the 23 patients who could be evaluated for response, 12 had major responses involving multiple sites. The numbers of CD4+ Treg cells were preferentially increased in all patients, with a peak median value, at 4 weeks, that was more than eight times the baseline value (P<0.001), without affecting CD4+ conventional T (Tcon) cells. The Treg:Tcon ratio increased to a median of more than five times the baseline value (P<0.001). The Treg cell count and Treg:Tcon ratio remained elevated at 8 weeks (P<0.001 for both comparisons with baseline values), then declined when the patients were not receiving interleukin-2. The increased numbers of Treg cells expressed the transcription factor forkhead box P3 (FOXP3) and could inhibit autologous Tcon cells. Immunologic and clinical responses were sustained in patients who received interleukin-2 for an extended period, permitting the glucocorticoid dose to be tapered by a mean of 60% (range, 25 to 100). Daily low-dose interleukin-2 was safely administered in patients with active chronic GVHD that was refractory to glucocorticoid therapy. Administration was associated with preferential, sustained Treg cell expansion in vivo and amelioration of the manifestations of chronic GVHD in a substantial proportion of patients. (Funded by a Dana-Farber Dunkin' Donuts Rising Star award and others; ClinicalTrials.gov number, NCT00529035.).
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                12 February 2021
                2020
                : 11
                : 607180
                Affiliations
                [1] 1 Université de Lorraine, CHRU Nancy, Hematology Department , Nancy, France
                [2] 2 Université de Lorraine, UMR 7365 CNRS, IMoPA , Nancy, France
                [3] 3 Department of Immunology, Infectiology and Haematology, Université de Paris, Inserm U1151, CNRS UMR 8253, Institut Necker Enfants Malades (INEM) , Paris, France
                [4] 4 Université de Paris, INSERM UMR 1163, Imagine Institute, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications , Paris, France
                [5] 5 Université de Paris, SFR Necker-UMS 3633/US24-Structure Fédérative de Recherche Necker, Plateforme d’Imagerie Cellulaire , Paris, France
                [6] 6 Université de Lorraine, CHRU Nancy, Immunology Department , Nancy, France
                Author notes

                Edited by: Ursula Grohmann, University of Perugia, Italy

                Reviewed by: Thomas Serwold, Joslin Diabetes Center and Harvard Medical School, United States; Makoto Miyara, Hôpital Pitié-Salpêtrière, France

                *Correspondence: Flora Zavala, flora.zavala@ 123456inserm.fr ; Maud D’Aveni, m.daveni-piney@ 123456chru.nancy.fr

                †These authors have contributed equally to this work

                This article was submitted to Immunological Tolerance and Regulation, a section of the journal Frontiers in Immunology

                Article
                10.3389/fimmu.2020.607180
                7907505
                89ee66d0-9f15-48ad-bf40-7f9339edc30c
                Copyright © 2021 D’Aveni, Notarantonio, Agbogan, Bertrand, Fouquet, Gastineau, Garfa-Traoré, De Carvalho, Hermine, Rubio and Zavala

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 16 September 2020
                : 31 December 2020
                Page count
                Figures: 4, Tables: 0, Equations: 0, References: 35, Pages: 10, Words: 5822
                Funding
                Funded by: Association pour la Recherche sur le Cancer 10.13039/100007391
                Funded by: Institut National Du Cancer 10.13039/501100006364
                Funded by: Assistance Publique - Hôpitaux de Paris 10.13039/501100002738
                Categories
                Immunology
                Original Research

                Immunology
                allogeneic hsct,graft versus host disease,mobilization,multipotent progenitors,regulatory t cells,expansion,alloreactivity,mixed lymphocyte reaction

                Comments

                Comment on this article