14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      PARP1 Co-Regulates EP300–BRG1-Dependent Transcription of Genes Involved in Breast Cancer Cell Proliferation and DNA Repair

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          BRG1, an active subunit of the SWI/SNF chromatin-remodeling complex, enables the EP300-dependent transcription of proliferation and DNA repair genes from their E2F/CpG-driven promoters in breast cancer cells. In the current study, we show that BRG1–EP300 complexes are accompanied by poly-ADP-ribose polymerase 1 (PARP1), which emerges as the functional component of the promoter-bound multiprotein units that are capable of controlling gene expression. This enzyme is co-distributed with BRG1 at highly acetylated promoters of genes such as CDK4, LIG1, or NEIL3, which are responsible for cancer cell growth and the removal of DNA damage. ADP-ribosylation is necessary to maintain active transcription, since it ensures an open chromatin structure that allows high acetylation and low histone density. PARP1-mediated modification of BRG1 and EP300 does not affect the association of enzymes with gene promoters; however, it does activate EP300, which acetylates nucleosomes, leading to their eviction by BRG1, thus allowing mRNA synthesis. Although PARP1 was found at BRG1 positive/H3K27ac negative promoters of highly expressed genes in a transformed breast cancer cell line, its transcriptional activity was limited to genes simultaneously controlled by BRG1 and EP300, indicating that the ADP-ribosylation of EP300 plays a dominant role in the regulation of BRG1–EP300-driven transcription. In conclusion, PARP1 directs the transcription of some proliferation and DNA repair genes in breast cancer cells by the ADP-ribosylation of EP300, thereby causing its activation and marking nucleosomes for displacement by BRG1. PARP1 in rapidly dividing cells facilitates the expression of genes that confer a cancer cell phenotype. Our study shows a new mechanism that links PARP1 with the removal of DNA damage in breast cancer cells via the regulation of BRG1–EP300-dependent transcription of genes involved in DNA repair pathways.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Manipulation of FASTQ data with Galaxy

          Summary: Here, we describe a tool suite that functions on all of the commonly known FASTQ format variants and provides a pipeline for manipulating next generation sequencing data taken from a sequencing machine all the way through the quality filtering steps. Availability and Implementation: This open-source toolset was implemented in Python and has been integrated into the online data analysis platform Galaxy (public web access: http://usegalaxy.org; download: http://getgalaxy.org). Two short movies that highlight the functionality of tools described in this manuscript as well as results from testing components of this tool suite against a set of previously published files are available at http://usegalaxy.org/u/dan/p/fastq Contact: james.taylor@emory.edu; anton@bx.psu.edu Supplementary information: Supplementary data are available at Bioinformatics online.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Chemical genetic discovery of PARP targets reveals a role for PARP-1 in transcription elongation.

            Poly[adenosine diphosphate (ADP)-ribose] polymerases (PARPs) are a family of enzymes that modulate diverse biological processes through covalent transfer of ADP-ribose from the oxidized form of nicotinamide adenine dinucleotide (NAD(+)) onto substrate proteins. Here we report a robust NAD(+) analog-sensitive approach for PARPs, which allows PARP-specific ADP-ribosylation of substrates that is suitable for subsequent copper-catalyzed azide-alkyne cycloaddition reactions. Using this approach, we mapped hundreds of sites of ADP-ribosylation for PARPs 1, 2, and 3 across the proteome, as well as thousands of PARP-1-mediated ADP-ribosylation sites across the genome. We found that PARP-1 ADP-ribosylates and inhibits negative elongation factor (NELF), a protein complex that regulates promoter-proximal pausing by RNA polymerase II (Pol II). Depletion or inhibition of PARP-1 or mutation of the ADP-ribosylation sites on NELF-E promotes Pol II pausing, providing a clear functional link between PARP-1, ADP-ribosylation, and NELF. This analog-sensitive approach should be broadly applicable across the PARP family and has the potential to illuminate the ADP-ribosylated proteome and the molecular mechanisms used by individual PARPs to mediate their responses to cellular signals.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Chromatin regulation by Brg1 underlies heart muscle development and disease

              SUMMARY Cardiac hypertrophy and failure are characterized by transcriptional reprogramming of gene expression. Adult cardiomyocytes in mice express primarily α-myosin heavy chain (α-MHC), whereas embryonic cardiomyocytes express β-MHC. Cardiac stress triggers adult hearts to undergo hypertrophy and a shift from α-MHC to fetal β-MHC expression. Here we show that Brg1, a chromatin-remodeling protein, plays critical roles in regulating cardiac growth, differentiation and gene expression. In embryos, Brg1 promotes myocyte proliferation by maintaining BMP10 and suppressing p57kip2 expression. It preserves fetal cardiac differentiation by interacting with HDAC and PARP to repress α-MHC and activate β-MHC. In adults, Brg1 is turned off in cardiomyocytes. It is reactivated by cardiac stresses and complexes with its embryonic partners, HDAC and PARP, to induce a pathological α- to β-MHC shift. Preventing Brg1 re-expression decreases hypertrophy and reverses such MHC switch. Brg1 is activated in certain patients with hypertrophic cardiomyopathy, its level correlating with disease severity and MHC changes. Our studies show that Brg1 maintains cardiomyocytes in an embryonic state, and demonstrate an epigenetic mechanism by which three classes of chromatin-modifying factors, Brg1, HDAC and PARP, cooperate to control developmental and pathological gene expression.
                Bookmark

                Author and article information

                Journal
                Cancers (Basel)
                Cancers (Basel)
                cancers
                Cancers
                MDPI
                2072-6694
                11 October 2019
                October 2019
                : 11
                : 10
                : 1539
                Affiliations
                [1 ]Department of General Biophysics, Institute of Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; maciej.sobczak@ 123456unilodz.eu
                [2 ]School of Life & Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK; a.r.pitt@ 123456aston.ac.uk (A.R.P.); c.m.spickett@ 123456aston.ac.uk (C.M.S.)
                Author notes
                [* ]Correspondence: agnieszka.robaszkiewicz@ 123456biol.uni.lodz.pl ; Tel.: +48-42-635-4449; Fax: +48-42-635-4449 or +48-42-635-4473
                Author information
                https://orcid.org/0000-0002-6265-5585
                Article
                cancers-11-01539
                10.3390/cancers11101539
                6826995
                31614656
                8a016183-5727-40be-a435-2090ecf054f3
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 17 August 2019
                : 05 October 2019
                Categories
                Article

                poly-adp-ribose polymerase 1 (parp1),brahma-related gene 1 (brg1),histone acetyltransferase p300 (ep300),gene transcription,cancer cell

                Comments

                Comment on this article