130
views
0
recommends
+1 Recommend
0 collections
    4
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      STEM: a tool for the analysis of short time series gene expression data

      product-review
      1 , ,   1
      BMC Bioinformatics
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Time series microarray experiments are widely used to study dynamical biological processes. Due to the cost of microarray experiments, and also in some cases the limited availability of biological material, about 80% of microarray time series experiments are short (3–8 time points). Previously short time series gene expression data has been mainly analyzed using more general gene expression analysis tools not designed for the unique challenges and opportunities inherent in short time series gene expression data.

          Results

          We introduce the Short Time-series Expression Miner (STEM) the first software program specifically designed for the analysis of short time series microarray gene expression data. STEM implements unique methods to cluster, compare, and visualize such data. STEM also supports efficient and statistically rigorous biological interpretations of short time series data through its integration with the Gene Ontology.

          Conclusion

          The unique algorithms STEM implements to cluster and compare short time series gene expression data combined with its visualization capabilities and integration with the Gene Ontology should make STEM useful in the analysis of data from a significant portion of all microarray studies. STEM is available for download for free to academic and non-profit users at http://www.cs.cmu.edu/~jernst/stem.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: not found

          Cluster analysis and display of genome-wide expression patterns.

          A system of cluster analysis for genome-wide expression data from DNA microarray hybridization is described that uses standard statistical algorithms to arrange genes according to similarity in pattern of gene expression. The output is displayed graphically, conveying the clustering and the underlying expression data simultaneously in a form intuitive for biologists. We have found in the budding yeast Saccharomyces cerevisiae that clustering gene expression data groups together efficiently genes of known similar function, and we find a similar tendency in human data. Thus patterns seen in genome-wide expression experiments can be interpreted as indications of the status of cellular processes. Also, coexpression of genes of known function with poorly characterized or novel genes may provide a simple means of gaining leads to the functions of many genes for which information is not available currently.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            In silico prediction of protein-protein interactions in human macrophages

            Background: Protein-protein interaction (PPI) network analyses are highly valuable in deciphering and understanding the intricate organisation of cellular functions. Nevertheless, the majority of available protein-protein interaction networks are context-less, i.e. without any reference to the spatial, temporal or physiological conditions in which the interactions may occur. In this work, we are proposing a protocol to infer the most likely protein-protein interaction (PPI) network in human macrophages. Results: We integrated the PPI dataset from the Agile Protein Interaction DataAnalyzer (APID) with different meta-data to infer a contextualized macrophage-specific interactome using a combination of statistical methods. The obtained interactome is enriched in experimentally verified interactions and in proteins involved in macrophage-related biological processes (i.e. immune response activation, regulation of apoptosis). As a case study, we used the contextualized interactome to highlight the cellular processes induced upon Mycobacterium tuberculosis infection. Conclusion: Our work confirms that contextualizing interactomes improves the biological significance of bioinformatic analyses. More specifically, studying such inferred network rather than focusing at the gene expression level only, is informative on the processes involved in the host response. Indeed, important immune features such as apoptosis are solely highlighted when the spotlight is on the protein interaction level.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization.

              We sought to create a comprehensive catalog of yeast genes whose transcript levels vary periodically within the cell cycle. To this end, we used DNA microarrays and samples from yeast cultures synchronized by three independent methods: alpha factor arrest, elutriation, and arrest of a cdc15 temperature-sensitive mutant. Using periodicity and correlation algorithms, we identified 800 genes that meet an objective minimum criterion for cell cycle regulation. In separate experiments, designed to examine the effects of inducing either the G1 cyclin Cln3p or the B-type cyclin Clb2p, we found that the mRNA levels of more than half of these 800 genes respond to one or both of these cyclins. Furthermore, we analyzed our set of cell cycle-regulated genes for known and new promoter elements and show that several known elements (or variations thereof) contain information predictive of cell cycle regulation. A full description and complete data sets are available at http://cellcycle-www.stanford.edu
                Bookmark

                Author and article information

                Journal
                BMC Bioinformatics
                BMC Bioinformatics
                BioMed Central (London )
                1471-2105
                2006
                5 April 2006
                : 7
                : 191
                Affiliations
                [1 ]Center for Automated and Learning and Discovery, School of Computer Science, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, PA 15213, USA
                Article
                1471-2105-7-191
                10.1186/1471-2105-7-191
                1456994
                16597342
                8a0b92e9-d7b9-4525-877c-0db9d757ac7d
                Copyright © 2006 Ernst and Bar-Joseph; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 12 December 2005
                : 5 April 2006
                Categories
                Software

                Bioinformatics & Computational biology
                Bioinformatics & Computational biology

                Comments

                Comment on this article