9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Profiling circulating tumour cells and other biomarkers of invasive cancers

      , , ,
      Nature Biomedical Engineering
      Springer Nature

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          During cancer progression, many tumours shed circulating tumour cells (CTCs) and other biomarkers into the bloodstream. The analysis of CTCs offers the prospect of collecting a liquid biopsy from a patient's blood to predict and monitor therapeutic responses and tumour recurrence. In this Review, we discuss progress towards the isolation and recovery of bulk CTCs from whole blood samples for the identification of cells with high metastatic potential. We provide an overview of the techniques that initially pointed to the clinical significance of CTCs and describe the key requirements for clinical applications of CTC analysis. We also summarize recent advances that permit the functional and biochemical phenotypes of CTCs to be characterized, and discuss the potential roles of these CTC characteristics in the formation of metastatic lesions. Moreover, we discuss the use of circulating tumour DNA and exosomes as markers for early cancer diagnosis and for the monitoring of cancer progression. Next-generation technologies and biomarkers for invasive cancers should allow for the unequivocal determination of the metastatic potential of CTCs, and for the meaningful analysis of circulating tumour DNA and exosomes.

          Related collections

          Most cited references82

          • Record: found
          • Abstract: found
          • Article: not found

          Tumor metastasis: molecular insights and evolving paradigms.

          Metastases represent the end products of a multistep cell-biological process termed the invasion-metastasis cascade, which involves dissemination of cancer cells to anatomically distant organ sites and their subsequent adaptation to foreign tissue microenvironments. Each of these events is driven by the acquisition of genetic and/or epigenetic alterations within tumor cells and the co-option of nonneoplastic stromal cells, which together endow incipient metastatic cells with traits needed to generate macroscopic metastases. Recent advances provide provocative insights into these cell-biological and molecular changes, which have implications regarding the steps of the invasion-metastasis cascade that appear amenable to therapeutic targeting. Copyright © 2011 Elsevier Inc. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting.

            Matrix metalloproteinases (MMPs) consist of a multigene family of zinc-dependent extracellular matrix (ECM) remodeling endopeptidases implicated in pathological processes, such as carcinogenesis. In this regard, their activity plays a pivotal role in tumor growth and the multistep processes of invasion and metastasis, including proteolytic degradation of ECM, alteration of the cell-cell and cell-ECM interactions, migration and angiogenesis. The underlying premise of the current minireview is that MMPs are able to proteolytically process substrates in the extracellular milieu and, in so doing, promote tumor progression. However, certain members of the MMP family exert contradicting roles at different stages during cancer progression, depending among other factors on the tumor stage, tumor site, enzyme localization and substrate profile. MMPs are therefore amenable to therapeutic intervention by synthetic and natural inhibitors, providing perspectives for future studies. Multiple therapeutic agents, called matrix metalloproteinase inhibitors (MMPIs) have been developed to target MMPs, attempting to control their enzymatic activity. Even though clinical trials with these compounds do not show the expected results in most cases, the field of MMPIs is ongoing. This minireview critically evaluates the role of MMPs in relation to cancer progression, and highlights the challenges, as well as future prospects, for the design, development and efficacy of MMPIs. © 2010 The Authors Journal compilation © 2010 FEBS.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Circulating tumor cells: liquid biopsy of cancer.

              The detection and molecular characterization of circulating tumor cells (CTCs) are one of the most active areas of translational cancer research, with >400 clinical studies having included CTCs as a biomarker. The aims of research on CTCs include (a) estimation of the risk for metastatic relapse or metastatic progression (prognostic information), (b) stratification and real-time monitoring of therapies, (c) identification of therapeutic targets and resistance mechanisms, and (d) understanding metastasis development in cancer patients. This review focuses on the technologies used for the enrichment and detection of CTCs. We outline and discuss the current technologies that are based on exploiting the physical and biological properties of CTCs. A number of innovative technologies to improve methods for CTC detection have recently been developed, including CTC microchips, filtration devices, quantitative reverse-transcription PCR assays, and automated microscopy systems. Molecular-characterization studies have indicated, however, that CTCs are very heterogeneous, a finding that underscores the need for multiplex approaches to capture all of the relevant CTC subsets. We therefore emphasize the current challenges of increasing the yield and detection of CTCs that have undergone an epithelial-mesenchymal transition. Increasing assay analytical sensitivity may lead, however, to a decrease in analytical specificity (e.g., through the detection of circulating normal epithelial cells). A considerable number of promising CTC-detection techniques have been developed in recent years. The analytical specificity and clinical utility of these methods must be demonstrated in large prospective multicenter studies to reach the high level of evidence required for their introduction into clinical practice. © 2012 American Association for Clinical Chemistry
                Bookmark

                Author and article information

                Journal
                Nature Biomedical Engineering
                Nat Biomed Eng
                Springer Nature
                2157-846X
                February 2018
                February 6 2018
                February 2018
                : 2
                : 2
                : 72-84
                Article
                10.1038/s41551-018-0190-5
                31015625
                8a0df903-0718-4f4d-8bcf-94f02f40743c
                © 2018

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article