13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Nonlinear partial differential equations and applications: Linking climate change and biological invasions: Ocean warming facilitates nonindigenous species invasions

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The spread of exotic species and climate change are among the most serious global environmental threats. Each independently causes considerable ecological damage, yet few data are available to assess whether changing climate might facilitate invasions by favoring introduced over native species. Here, we compare our long-term record of weekly sessile marine invertebrate recruitment with interannual variation in water temperature to assess the likely effect of climate change on the success and spread of introduced species. For the three most abundant introduced species of ascidian (sea squirt), the timing of the initiation of recruitment was strongly negatively correlated with winter water temperature, indicating that invaders arrived earlier in the season in years with warmer winters. Total recruitment of introduced species during the following summer also was positively correlated with winter water temperature. In contrast, the magnitude of native ascidian recruitment was negatively correlated with winter temperature (more recruitment in colder years) and the timing of native recruitment was unaffected. In manipulative laboratory experiments, two introduced compound ascidians grew faster than a native species, but only at temperatures near the maximum observed in summer. These data suggest that the greatest effects of climate change on biotic communities may be due to changing maximum and minimum temperatures rather than annual means. By giving introduced species an earlier start, and increasing the magnitude of their growth and recruitment relative to natives, global warming may facilitate a shift to dominance by nonnative species, accelerating the homogenization of the global biota.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: not found

          Does global change increase the success of biological invaders?

          Biological invasions are gaining attention as a major threat to biodiversity and an important element of global change. Recent research indicates that other components of global change, such as increases in nitrogen deposition and atmospheric CO2 concentration, favor groups of species that share certain physiological or life history traits. New evidence suggests that many invasive species share traits that will allow them to capitalize on the various elements of global change. Increases in the prevalence of some of these biological invaders would alter basic ecosystem properties in ways that feed back to affect many components of global change.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ecological roulette: the global transport of nonindigenous marine organisms.

            Ocean-going ships carry, as ballast, seawater that is taken on in port and released at subsequent ports of call. Plankton samples from Japanese ballast water released in Oregon contained 367 taxa. Most taxa with a planktonic phase in their life cycle were found in ballast water, as were all major marine habitat and trophic groups. Transport of entire coastal planktonic assemblages across oceanic barriers to similar habitats renders bays, estuaries, and inland waters among the most threatened ecosystems in the world. Presence of taxonomically difficult or inconspicuous taxa in these samples suggests that ballast water invasions are already pervasive.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Making mistakes when predicting shifts in species range in response to global warming.

              Many attempts to predict the biotic responses to climate change rely on the 'climate envelope' approach, in which the current distribution of a species is mapped in climate-space and then, if the position of that climate-space changes, the distribution of the species is predicted to shift accordingly. The flaw in this approach is that distributions of species also reflect the influence of interactions with other species, so predictions based on climate envelopes may be very misleading if the interactions between species are altered by climate change. An additional problem is that current distributions may be the result of sources and sinks, in which species appear to thrive in places where they really persist only because individuals disperse into them from elsewhere. Here we use microcosm experiments on simple but realistic assemblages to show how misleading the climate envelope approach can be. We show that dispersal and interactions, which are important elements of population dynamics, must be included in predictions of biotic responses to climate change.
                Bookmark

                Author and article information

                Journal
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                Proceedings of the National Academy of Sciences
                0027-8424
                1091-6490
                November 26 2002
                November 06 2002
                November 26 2002
                : 99
                : 24
                : 15497-15500
                Article
                10.1073/pnas.242437499
                137745
                12422019
                8a117a42-41a2-4d53-9c41-40a43d59a4be
                © 2002
                Product
                Self URI (article page): http://www.pnas.org/cgi/doi/10.1073/pnas.242437499

                Comments

                Comment on this article