88
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Anti-proliferation effects of Sirolimus sustained delivery film in rabbit glaucoma filtration surgery

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Purpose

          To investigate the efficacy, safety, and mechanisms of Sirolimus sustained delivery film on prevention of scar formation in a rabbit model of glaucoma filtration surgery.

          Methods

          Sixty-four New Zealand white rabbits who underwent trabeculectomy in the right eye were randomly allocated to one of the four treatment regimens: Sirolimus sustained delivery film treatment group (Group A), or drug-free film treatment group (Group B), or 30 ng/ml Sirolimus-soaked sponge treatment group (Group C), or no adjunctive treatment group (Group D), and each group consists of 16 rabbits. Intraocular pressure (IOP), morphologic changes of bleb, anterior chamber flare, and corneal endothelial cell count and complications were evaluated over a 28-day period follow-up time. Aqueous humor samples were gathered from Group A, and the concentration of Sirolimus was measured regularly post-operation. Rabbits were sacrificed on the 7th, 14th, and 28th day post-operation separately, and the fibroblast hypertrophy, infiltration of inflammatory, and proliferation of new collagen fiber formation in each group were evaluated with HE and Masson staining. Proliferative cell nuclear antigen (PCNA) and fibroblast apoptosis were evaluated by immunohistochemistry and terminal deoxynucleotidyl transferasemediated dUTP nick end labeling (TUNEL) assay at the 28th day post-operation.

          Results

          Both Sirolimus sustained delivery film (Group A) and Sirolimus alone (Group C) were well tolerated in this model, and significantly prolonged bleb survival compared with no drug treatment group (Group B and D; p<0.001). Group A had the longest bleb survival time in comparison with other groups (p<0.001). There were significant differences in IOP readings between Group A and other groups at the last follow-up (p<0.05). The concentration of Group A maintained stable for over 2 weeks, drops from (10.56 ±0.05) ng/ml at day 3 to (7.74 ±0.05) ng/ml at day 14. The number of corneal endothelial cells of Group A was not statistically significant between pre and post-operation. Histologic examination demonstrated that eyes treated with Sirolimus, especially the Sirolimus sustained delivery film, showed an obvious reduction in subconjunctival fibroblast scar tissue formation compared with no drug treatment groups, and had minimal evidence of inflammatory cell infiltration and new collagen deposition in the subconjunctiva. Immunohistochemistry assay showed that PCNA-expression was lower in the Group A (16.25±3.24%) compared to other groups (p<0.01). TUNEL assay showed a significant increase in the number of apoptotic fibroblasts around the surgical area in Group A and Group C (9.75±1.71% and 8.50±1.92%) compared to the Group B and D (p<0.01).

          Conclusions

          Sirolimus drug sustained delivery film can inhibit inflammatory cell activity, impede fibroblast proliferation activity, and induce fibroblast apoptosis in the filtration surgery sites in rabbit. The results indicate a safe and effective treatment strategy in anti-scaring treatment in glaucoma surgery.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Current advances in research and clinical applications of PLGA-based nanotechnology.

          Co-polymer poly(lactic-co-glycolic acid) (PLGA) nanotechnology has been developed for many years and has been approved by the US FDA for the use of drug delivery, diagnostics and other applications of clinical and basic science research, including cardiovascular disease, cancer, vaccine and tissue engineering. This article presents the more recent successes of applying PLGA-based nanotechnologies and tools in these medicine-related applications. It focuses on the possible mechanisms, diagnosis and treatment effects of PLGA preparations and devices. This updated information will benefit to both new and established research scientists and clinical physicians who are interested in the development and application of PLGA nanotechnology as new therapeutic and diagnostic strategies for many diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            mTOR: taking cues from the immune microenvironment.

            The ultimate outcome of T cell receptor recognition is determined by the context in which the antigen is encountered. In this fashion both antigen-presenting cells and T cells must integrate multiple environmental cues in the form of pathogen-associated molecular patterns, cytokines and accessory molecule signals. The mammalian target of rapamycin (mTOR) is an evolutionarily conserved serine/threonine kinase that plays a central role in integrating environmental signals critical to regulating metabolism and cell survival. In this paper we review the data demonstrating that mTOR integrates signals from the immune microenvironment and therefore facilitates the generation of the adaptive immune response. Specifically, we review the role of mTOR in promoting dendritic cell activation and maturation, in regulating full T cell activation versus anergy, and influencing the induction of regulatory T cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Orthopaedic applications for PLA-PGA biodegradable polymers.

              Biodegradable polymers, especially those belonging to the family of polylactic acid (PLA) and polyglycolic acid (PGA), play an increasingly important role in orthopaedics. These polymers degrade by hydrolysis and enzymatic activity and have a range of mechanical and physical properties that can be engineered appropriately to suit a particular application. Their degradation characteristics depend on several parameters including their molecular structure, crystallinity, and copolymer ratio. These biomaterials are also rapidly gaining recognition in the fledging field of tissue engineering because they can be fashioned into porous scaffolds or carriers of cells, extracellular matrix components, and bioactive agents. Although their future appears to be bright, several questions regarding the biocompatibility of these materials linger and should be addressed before their wide-scale use. In the context of musculoskeletal tissue, this report provides a comprehensive review of properties and applications of biodegradable PLA/PGA polymers and their copolymers. Of special interest are orthopaedic applications, biocompatibility studies, and issues of sterilization and storage of these versatile biomaterials. Also discussed is the fact that terms such as PLA, PGA, or PLA-PGA do not denote one material, but rather a large family of materials that have a wide range of differing bioengineering properties and concomitant biological responses. An analysis of some misconceptions, problems, and potential solutions is also provided.
                Bookmark

                Author and article information

                Journal
                Mol Vis
                MV
                Molecular Vision
                Molecular Vision
                1090-0535
                2011
                27 September 2011
                : 17
                : 2495-2506
                Affiliations
                [1 ]Department of Ophthalmology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, People’s Republic of China
                [2 ]Key Laboratory of Vision Loss and Restoration, Ministry of Education, Department of Ophthalmology, Peking University People’s Hospital, Beijing, People’s Republic of China
                [3 ]State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
                [4 ]Research and Development Center of Pharmaceutics, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, Guangdong, People’s Republic of China
                Author notes

                The first two authors contributed equally to this work and are co-first authors

                Correspondence to: Rongjiang Luo Department of ophthalmology, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan Road II, Guangzhou, Guangdong, 510080, P.R. China; Phone: 86-20-87330373; FAX: 86-20-87333271; email: lr047@ 123456163.com
                Article
                270 2011MOLVIS0265
                3185021
                21976960
                8a20eaec-bfa2-4e1b-ae50-9f3d8a507a0a
                Copyright © 2011 Molecular Vision.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 14 June 2011
                : 17 September 2011
                Categories
                Research Article
                Custom metadata
                Export to XML
                Luo

                Vision sciences
                Vision sciences

                Comments

                Comment on this article